Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla

  • Anna Nikiel-Osuchowska
  • Guilhem Collier
  • Bartosz Głowacz
  • Tadeusz Pałasz
  • Zbigniew Olejniczak
  • Władysław P. Wȩglarz
  • Geneviève Tastevin
  • Pierre-Jean Nacher
  • Tomasz Dohnalik
Open Access
Regular Article

Abstract

Metastability exchange optical pumping (MEOP) is experimentally investigated in 3He at 4.7 T, at room temperature and for gas pressures ranging from 1 to 267 mbar. The 23S-23P transition at 1083 nm is used for optical pumping and for detection of the laser-induced orientation of 3He atoms in the rf discharge plasma. The collisional broadening rate is measured (12.0 ± 0.4 MHz mbar−1 FHWM) and taken into account for accurate absorption-based measurements of both nuclear polarization in the ground state and atom number density in the metastable 23S state. The results lay the ground for a comprehensive assessment of the efficiency of MEOP, by comparison with achievements at lower field (1 mT–2 T) over an extended range of operating conditions. Stronger hyperfine decoupling in the optically pumped 23S state is observed to systematically lead to slower build-up of 3He orientation in the ground state, as expected. The nuclear polarizations obtained at 4.7 T still decrease at high pressure but in a less dramatic way than observed at 2 T in the same sealed glass cells. To date, thanks to the linear increase in gas density, they correspond to the highest nuclear magnetizations achieved by MEOP in pure 3He gas. The improved efficiency puts less demanding requirements for compression stages in polarized gas production systems and makes high-field MEOP particularly attractive for magnetic resonance imaging of the lungs, for instance.

Keywords

Atomic Physics 

References

  1. 1.
    F.D. Colegrove, L.D. Schearer, G.K. Walters, Phys. Rev. 132, 2561 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    P.-J. Nacher, M. Leduc, J. Phys. 46, 2057 (1985)CrossRefGoogle Scholar
  3. 3.
    M. Leduc, P.-J. Nacher, G. Tastevin, E. Courtade, Hyperf. Interact. 127, 443 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    P.-J. Nacher, E. Courtade, M. Abboud, A. Sinatra, G. Tastevin, T. Dohnalik, Acta Phys. Polon. B 33, 2225 (2002)ADSGoogle Scholar
  5. 5.
    M. Abboud, A. Sinatra, X. Maitre, G. Tastevin, P.-J. Nacher, Europhys. Lett. 68, 480 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    J. Becker, W. Heil, B. Krug, M. Leduc, M. Meyerhoff, P.-J. Nacher, E. Otten, T. Prokscha, L. Schearer, R. Surkau, Nucl. Instrum. Methods Phys. Res. A 346, 45 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    P.-J. Nacher, G. Tastevin, X. Maitre, X. Dollat, B. Lemaire, J. Olejnik, Eur. Radiol. 9, B18 (1999)CrossRefGoogle Scholar
  8. 8.
    T. Gentile et al., Magn. Res. Med. 43, 290 (2000)CrossRefGoogle Scholar
  9. 9.
    L. Darrasse, G. Guillot, P.-J. Nacher, G. Tastevin, C. R. Acad. Sci. Paris Série IIb 324, 691 (1997)ADSGoogle Scholar
  10. 10.
    E. Courtade, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France, 2001, http://tel.archives-ouvertes.fr/tel-00001447
  11. 11.
    E. Courtade, F. Marion, P.-J. Nacher, G. Tastevin, T. Dohnalik, K. Kiersnowski, Hyperf. Interact. 127, 451 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    J.L. Flowers, B.W. Petley, M.G. Richards, J. Phys. B 23, 1359 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    A. Nikiel, T. Palasz, M. Suchanek, M. Abboud, A. Sinatra, Z. Olejniczak, T. Dohnalik, G. Tastevin, P.-J. Nacher, Eur. Phys. J. Special Topics 144, 255 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Batz, Ph.D. thesis, UPMC - Paris 6, France and J. Gutenberg Universität, Mainz, Germany, 2011, http://tel.archives-ouvertes.fr/tel-00665393
  15. 15.
    E. Courtade, F. Marion, P.-J. Nacher, G. Tastevin, K. Kiersnowski, T. Dohnalik, Eur. Phys. J. D 21, 25 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M. Abboud, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France, 2005, http://tel.archives-ouvertes.fr/tel-00011099/
  17. 17.
    T. Dohnalik, A. Nikiel, T. Palasz, M. Suchanek, G. Collier, M. Grenczuk, B. Glowacz, Z. Olejniczak, Eur. Phys. J. Appl. Phys. 54, 20802 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    K. Suchanek, M. Suchanek, A. Nikiel, T. Palasz, M. Abboud, A. Sinatra, P.-J. Nacher, G. Tastevin, Z. Olejniczak, T. Dohnalik, Eur. Phys. J. Special Topics 144, 67 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    C. Talbot, M. Batz, P.-J. Nacher, G. Tastevin, J. Phys.: Conf. Ser. 294, 012008 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Nikiel, Ph.D. thesis, Jagiellonian University, Krakow, Poland, 2011Google Scholar
  21. 21.
    W.A. Fitzsimmons, N.F. Lane, G.K. Walters, Phys. Rev. 174, 193 (1968)ADSCrossRefGoogle Scholar
  22. 22.
    R. Deloche, P. Monchicourt, M. Cheret, F. Lambert, Phys. Rev. A 13, 1140 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    M. Abboud, A. Sinatra, G. Tastevin, P.-J. Nacher, X. Maitre, Laser Phys. 15, 475 (2005)Google Scholar
  24. 24.
    M. Batz, P.-J. Nacher, G. Tastevin, J. Phys.: Conf. Ser. 294, 012002 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Handbook of atomic, molecular, and optical physics, edited by G. Drake (Springer, 2006), Chap. 11.5Google Scholar
  26. 26.
    D. Bloch, G. Trenec, M. Leduc, J. Phys. B 18, 1093 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    K. Tachibana, Y. Kishimoto, O. Sakai, J. Appl. Phys. 97, 123301 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    T. Zelevinsky, Ph.D. thesis, Harvard University, Cambridge, USA, 2004Google Scholar
  29. 29.
    D. Vrinceanu, S. Kotochigova, H.R. Sadeghpour, Phys. Rev. A 69, 022714 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    R. Barbé, M. Leduc, F. Laloë, J. Phys. 35, 935 (1974)CrossRefGoogle Scholar
  31. 31.
    N.P. Bigelow, P.-J. Nacher, M. Leduc, J. Phys. II 2, 2159 (1992)CrossRefGoogle Scholar
  32. 32.
    T.R. Gentile, R.D. McKeown, Phys. Rev. A 47, 456 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    M. Batz, S. Baessler, W. Heil, E. Otten, D. Rudersdorf, J. Schmiedeskamp, Y. Sobolev, M. Wolf, J. Res. Natl. Inst. Stand. Technol. 110, 293 (2005)CrossRefGoogle Scholar
  34. 34.
    G. Collier, Ph.D. thesis, Jagiellonian University, Krakow, Poland, 2011, http://www4.fais.uj.edu.pl/pracedr/Guilhem˙Collier˙2011.pdf
  35. 35.
    E. Stoltz, M. Meyerhoff, N. Bigelow, M. Leduc, P.-J. Nacher, G. Tastevin, Appl. Phys. B: Lasers Opt. 63, 629 (1996)ADSGoogle Scholar
  36. 36.
    C. Larat, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France, 1991, http://tel.archives-ouvertes.fr/tel-00011879
  37. 37.
    G. Collier, T. Palasz, A. Wojna, B. Glowacz, M. Suchanek, Z. Olejniczak, T. Dohnalik, J. Appl. Phys. 113, 204905 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007), Chap. 10Google Scholar
  39. 39.
    G. Tastevin, S. Grot, E. Courtade, S. Bordais, P.-J. Nacher, Appl. Phys. B: Lasers Opt. 78, 145 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anna Nikiel-Osuchowska
    • 1
  • Guilhem Collier
    • 1
  • Bartosz Głowacz
    • 1
    • 2
  • Tadeusz Pałasz
    • 1
  • Zbigniew Olejniczak
    • 1
    • 3
  • Władysław P. Wȩglarz
    • 3
  • Geneviève Tastevin
    • 2
  • Pierre-Jean Nacher
    • 2
  • Tomasz Dohnalik
    • 1
  1. 1.Marian Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Laboratoire Kastler BrosselENS, UPMC-Paris 6, CNRSParis Cedex 05France
  3. 3.Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  4. 4.Institute of PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  5. 5.The University of Sheffield, Royal Hallamshire HospitalSheffieldUK

Personalised recommendations