Exact matter-wave vortices in a driven optical lattice

  • Yan Deng
  • Wenhua HaiEmail author
  • Zheng Zhou
Regular Article


We investigate vortex dynamics of a periodically driven Bose-Einstein condensate confined in a spatially two-dimensional optical lattice. An exact Floquet solution of the Gross-Pitaevskii equation is obtained for a certain parameter region which can be divided into the phase-jumping and phase-continuing regions. In the former region, the exact solution can describe spatiotemporal evolution of multiple vortices. For a small ratio of driving strength to optical lattice depth the vortices keep nearly unmoved. With the increase of the ratio, the vortices undergo an effective interaction and periodically evolve along some fixed circular orbits that leads the vortex dipoles and quadrupoles to produce and break alternatively. There is a critical ratio in the phase-jumping region beyond which the vortices generate and melt periodically. In the phase-continuing region, the condensate in the exact Floquet state evolves periodically without zero-density nodes. It is numerically demonstrated that the exact solution is stable under an initial perturbation for both parameter regions, except for a subregion of the phase-jumping region in which stability of the condensate is lost. However, the solution is structurally stable under a small parameter perturbation only for the phase-continuing region, while for the whole phase-jumping region the structural stability is destroyed. The results suggest a scheme for creating and controlling matter-wave vortices.


Cold Matter and Quantum Gas 


  1. 1.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  2. 2.
    L.M. Pismen, Vortices in Nonlinear Fields (Oxford University Press, Oxford, 1999)Google Scholar
  3. 3.
    D.S. Rokhsar, Phys. Rev. Lett. 79, 2164 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    R. Dum, J.I. Cirac, M. Lewenstein, P. Zoller, Phys. Rev. Lett. 80, 2972 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Castin, R. Dum, Eur. Phys. J. D 7, 399 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    L. Wu, L. Li, J.F. Zhang, D. Mihalache, B.A. Malomed, W.M. Liu, Phys. Rev. A 81, 061805(R) (2010)ADSGoogle Scholar
  7. 7.
    L.H. Wen, H. Xiong, B. Wu, Phys. Rev. A 82, 053627 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Williams, M.J. Holl, Nature 401, 568 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu, W. Ketterle, Phys. Rev. Lett. 87, 210402 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    G. Andrelczyk, M. Brewczyk, L. Dobrek, M. Gajda, M. Lewenstein, Phys. Rev. A 64, 043601 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    A.E. Leanhardt, A. Görlitz, A.P. Chikkatur, D. Kielpinski, Y. Shin, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 89, 190403 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    T. Isoshima, M. Nakahara, T. Ohmi, K. Machida, Phys. Rev. A 61, 063610 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Dutton, M. Budde, C. Slowe, L.V. Hau, Science 293, 663 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    F. Dalfovo, S. Stringari, Phys. Rev. A 53, 2477 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    M. Tsubota, K. Kasamatsua, M. Ueda, Physica B 329, 21 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Reijnders, R.A. Duine, Phys. Rev. A 71, 063607 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, I.G. Kevrekidis, Mod. Phys. Lett. B 18, 1481 (2004)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    K.J.H. Law, P.G. Kevrekidis, B.P. Anderson, R. Carretero-González, D.J. Frantzeskakis, J. Phys. B 41, 195303 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M. Modugno, L. Pricoupenko, Y. Castin, Eur. Phys. J. D 22, 235 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    R. Driben, B.A. Malomed, Eur. Phys. J. D 50, 317 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    H.C. Lee, T.F. Jiang, Eur. Phys. J. D 58, 311 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Martikainen, H.T.C. Stoof, Phys. Rev. Lett. 91, 240403 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Snoek, H.T.C. Stoof, Phys. Rev. Lett. 96, 230402 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kasamatsu, M. Tsubota, Phys. Rev. Lett. 97, 240404 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    W. Hai, C. Lee, Q. Zhu, J. Phys. B 41, 095301 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    W. Hai, G. Chong, Q. Xie, J. Lu, Eur. Phys. J. D 28, 267 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    W. Hai, Y. Li, B. Xia, X. Luo, Europhys. Lett. 71, 28 (2005)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    H. Fielding, M. Shapiro, T. Baumert, J. Phys. B 41, 070201 (2008)CrossRefGoogle Scholar
  34. 34.
    W.H. Hai, Q. Xie, S.G. Rong, Eur. Phys. J. D 61, 431 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Malomed, Y.A. Stepanyants, Chaos 20, 013130 (2010)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    T. Mayteevarunyoo, B.A. Malomed, Phys. Rev. A 74, 033616 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    G. Burlak, B.A. Malomed, Phys. Rev. A 77, 053606 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Bronski, L.D. Carr, B. Deconinck, J.N. Kutz, Phys. Rev. Lett. 86, 1402 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    N.R. Cooper, N.K. Wilkin, J.M.F. Gunn, Phys. Rev. Lett. 87, 120405 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    L. Onsager, Nuovo Cimento Suppl. 6, 249 (1949)MathSciNetCrossRefGoogle Scholar
  42. 42.
    L.C. Crasovan, G. Molina-Terriza, J.P. Torres, L. Torner, V.M. Pérez-García, D. Mihalache, Phys. Rev. E 66, 036612 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    A. Dreischuh, G.G. Paulus, F. Zacher, F. Grasbon, H. Walther, Phys. Rev. E 60, 6111 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    L.C. Crasovan, V. Vekslerchik, V.M. Pérez-García, J.P. Torres, D. Mihalache, L. Torner, Phys. Rev. A 68, 063609 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    M. Möttönen, S.M.M. Virtanen, T. Isoshima, M.M. Salomaa, Phys. Rev. A 71, 033626 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    J.C. Bronski, L.D. Carr, B. Deconinck, J.N. Kutz, K. Promislow, Phys. Rev. E 63, 036612 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    J.C. Bronski, L.D. Carr, R. Carretero-González, B. Deconinck, J.N. Kutz, K. Promislow, Phys. Rev. E 64, 056615 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    J.J. García-Ripoll, G. Molina-Terriza, V.M. Pérez-García, L. Torner, Phys. Rev. Lett. 87, 140403 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    B. Wu, Q. Niu, Phys. Rev. A 64, 061603R (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaP.R. China

Personalised recommendations