Advertisement

Electronic and optical properties of agglomerated hydrogen terminated silicon nanoparticles

  • Priya FrancisEmail author
  • Sumati Patil
  • Chiranjib Rajesh
  • Sudip Chakraborty
  • Shailaja Mahamuni
  • Chandrakant V. Dharmadhikari
  • Subhash V. Ghaisas
Regular Article

Abstract

Ab initio studies of silicon nanoparticles (NP) are ample in literature. We present the results of ab initio computations based on density functional theory (DFT) for the chemically interacting hydrogen terminated silicon (Si-H) NPs. This is considered to be the initial stage of agglomeration. Consequences of these combinations on the electronic and optical properties of the resulting cluster are discussed. The fully passivated Si-H NPs do not react with other NPs. The reaction is possible only between two NPs with one or more surface hydrogen being removed or replaced by other atom/molecule. Variety of bonding configurations are observed. An electron deficient three way bonding for oxygen is observed when OH replacing H on one NP interacts with dangling bond on the other NP. The reactions between NPs are sensitive to the presence of unpaired electrons on the dangling bonds. The defects introduce energy levels within the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the NPs. The combination of these NPs lead to a band of defect states within the HOMO-LUMO gap. The presence of such states is detected through scanning tunnelling spectroscopy. Our experimental results support such a scenario. The absorption optical spectra of individual NPs shows detectable changes after two NPs react.

Keywords

Clusters and Nanostructures 

Supplementary material

10053_2013_569_MOESM1_ESM.pdf (349 kb)
Supplementary material, approximately 349 KB.

References

  1. 1.
    D.A. Eckhoff, J.D.B. Sutin, R.M. Clegg, E. Gratton, E.V. Rogozhina, P.V. Braun, J. Phys. Chem. B 109, 19786 (2005)CrossRefGoogle Scholar
  2. 2.
    A. Smith, Z.H. Yamani, N. Roberts, J. Turner, S.R. Habbal, S. Granick, M.H. Nayfeh, Phys. Rev. B 72, 205307 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    M.B. Gongalsky, A.Y. Kharin, L.A. Osminkina, V.Y. Timoshenko, J. Jeong, H. Lee, B.H. Chung, Nanoscale Res. Lett. 7, 446 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Nano Lett. 7, 2506 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    X. Li, Y. He, M.T. Swihart, Langmuir 20, 4720 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Botti, A. Castro, X. Andrade, A. Rubio, M.A.L. Marques, Phys. Rev. B 78, 035333 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    T. Hawa, M.R. Zachariah, Phys. Rev. B 69, 035417 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    X. Lia, Y. Hea, S.S. Talukdara, M. Swihart, Phase Transit. 77, 131 (2004)CrossRefGoogle Scholar
  9. 9.
    D. Prendergast, J.C. Grossman, A.J. Williamson, J.-L. Fattebert, G. Galli, J. Am. Chem. Soc. 126, 13827 (2004)CrossRefGoogle Scholar
  10. 10.
    Y. Ge, J.D. Head, J. Phys. Chem. B 106, 6997 (2002)CrossRefGoogle Scholar
  11. 11.
    R.R. Zope, T. Baruah, S.L. Richardson, M.R. Pederson, B.I. Dunlap, J. Chem. Phys. 133, 034301 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  14. 14.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Chelikowsky, N. Troullier, Y. Saad, Phys. Rev. Lett. 72, 1240 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Chelikowsky, N. Troullier, K. Wu, Y. Saad, Phys. Rev. B 50, 11355 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    K. Gaál-Nagy, G. Canevari, G. Onida, J. Phys.: Condens. Matter 20, 224013 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    S. Chakraborty, C. Rajesh, S. Mahamuni, S.V. Ghaisas, Adv. Sci. Lett. 4, 3580 (2011)CrossRefGoogle Scholar
  24. 24.
    I. Vasiliev, S. Öğüt, J.R. Chelikowsky, Phys. Rev. B 65, 115416 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    V. Svrcek, D. Mariotti, K. Kalia, C. Dickinson, M. Kondo, J. Phys. Chem. C 115, 6235 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Turker, J. Mol. Struct. (Theochem) 629, 279 (2003)CrossRefGoogle Scholar
  27. 27.
    J. Jahanmir, P.E. West, T.N. Rhodin, Appl. Phys. Lett. 52, 2086 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    J. Jahanmir, P.E. West, A. Young, T.N. Rhodin, J. Vac. Sci. Technol. A 7, 2741 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    C. Rajesh, M. Pramod, S. Patil, S. Mahamuni, S. More, R. Dusane, S.V. Ghaisas, Sol. Energy 86, 489 (2012)CrossRefGoogle Scholar
  30. 30.
    L.E. Ramos, J. Paier, G. Kresse, F. Bechstedt, Phys. Rev. B 78, 195423 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M.L. Tiago, J.R. Chelikowsky, Phys. Rev. B 73, 205334 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    M. Rohlfing, S.G. Louie, Phys. Rev. B 62, 4927 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Priya Francis
    • 1
    Email author
  • Sumati Patil
    • 2
  • Chiranjib Rajesh
    • 3
  • Sudip Chakraborty
    • 1
  • Shailaja Mahamuni
    • 3
  • Chandrakant V. Dharmadhikari
    • 2
  • Subhash V. Ghaisas
    • 1
  1. 1.Department of Electronic ScienceUniversity of PunePuneIndia
  2. 2.Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of PhysicsUniversity of PunePuneIndia
  3. 3.Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations