Advertisement

Probing the structural and electronic properties of bimetallic Group-III metal-doped gold clusters: AunM2 (M = Na, Mg, Al; n = 1–8)

  • Yan-Fang Li
  • Yang Li
  • Xiao-Yu Kuang
Regular Article

Abstract

Employing first-principles density functional theory at the PW91PW91 level, the equilibrium geometries, relative stabilities, and electronic properties of bimetallic Au n M2 (M = Na, Mg, Al; n = 1–8) clusters have been systematically investigated in comparison with pure gold clusters. The optimised results indicate that the doping atom Na trends to occupy a peripheral site in the host, while Mg and Al atoms favour the center site. Furthermore, Al-induced geometries become three-dimensional more easily. Much to our surprise, in the most stable isomers, doping with binary Group-III metal atoms markedly changes the geometries of the ground-state Aun+2 clusters, and higher average atomic binding energies are found in Al-doped clusters. The calculated fragmentation energies, second-order difference of energies, HOMO-LUMO energy gaps, and chemical hardness as a function of cluster size exhibit a pronounced odd-even alternating phenomenon, suggesting the clusters with closed electronic shells have higher relative stabilities. A natural population analysis has been performed to understand the effects of different doping atoms on electronic properties.

Keywords

Clusters and Nanostructures 

Supplementary material

10053_2013_559_MOESM1_ESM.pdf (7.6 mb)
Supplementary material, approximately 7.55 MB.

References

  1. 1.
    R. Garza-Galindo, M. Castro, M.A. Duncan, J. Phys. Chem. A 116, 1906 (2012)CrossRefGoogle Scholar
  2. 2.
    M.M. Zhong, X.Y. Kuang, Z.H. Wang, Y.F. Li, Y.R. Zhao, A.J. Mao, Eur. Phys. J. D 66, 80 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    K. Gupta, T.K. Ghanty, S.K. Ghosh, Phys. Chem. Chem. Phys. 12, 2929 (2010)CrossRefGoogle Scholar
  4. 4.
    H.Q. Wang, H.F. Li, X.Y. Kuang, Phys. Chem. Chem. Phys. 14, 5272 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Petek, J. Zhao, Chem. Rev. 110, 7082 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    C. Kerpal, D.J. Harding, G. Meijer, A. Fielicke, Eur. Phys. J. D 63, 231 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Yamada, A. Mawatari, M. Tanabe, K. Osakada, T. Tanase, Angew. Chem. 121, 576 (2009)CrossRefGoogle Scholar
  9. 9.
    L.M. Wang, R. Pal, W. Huang, X.C. Zeng, L.S. Wang, J. Chem. Phys. 132, 114306 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    X.J. Kuang, X.Q. Wang, G.B. Liu, J. Mol. Model. 17, 2005 (2011)CrossRefGoogle Scholar
  11. 11.
    D.W. Yuan, X.G. Gong, R.Q. Wu, Phys. Rev. B 78, 035441 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M. Gao, A. Lyalin, T. Taketsugu, Catalysts 1, 18 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Zanchet, A. Dorta-Urra, A. Aguado, O. Roncero, J. Phys. Chem. C 115, 47 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Bürgel, N.M. Reilly, G.E. Johnson, R. Mitriæ, M.L. Kimble, A.W. Castleman Jr., V. Bonačić-Koutecký, J. Am. Chem. Soc. 130, 1694 (2008)CrossRefGoogle Scholar
  15. 15.
    D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    C.F. Shaw III, Chem. Rev. 99, 2589 (1999)CrossRefGoogle Scholar
  17. 17.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    P. Palade, F.E. Wagner, A.D. Jianu, G. Filoti, J. Alloys Compd. 353, 23 (2003)CrossRefGoogle Scholar
  19. 19.
    H. Piao, M. Suominen, D. Miller, N.S. Mcintyre, Appl. Surf. Sci. 187, 266 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 110, 9915 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans, P. Lievens, J. Am. Chem. Soc. 125, 2862 (2003)CrossRefGoogle Scholar
  22. 22.
    R. Pal, L.F. Cui, S. Bulusu, H.J. Zhai, L.S. Wang, X.C. Zeng, J. Chem. Phys. 128, 024305 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    K. Koyasu, M. Mitsui, A. Nakajima, K. Kaya, Chem. Phys. Lett. 358, 224 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Negishi, Y. Nakamura, A. Nakajima, K. Kaya, J. Chem. Phys. 115, 3657 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    X. Li, B. Kiran, J. Li, H.J. Zhai, L.S. Wang, Angew. Chem. Int. Ed. 41, 4786 (2002)CrossRefGoogle Scholar
  26. 26.
    M. Vogel, K. Hansen, A. Herlert, L. Schweikhard, Phys. Rev. A 66, 033201 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    M. Vogel, K. Hansen, A. Herlert, L. Schweikhard, Appl. Phys. B 73, 411 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hansen, A. Herlert, L. Schweikhard, M. Vogel, Phys. Rev. A 73, 063202 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    K. Koyasu, Y. Naono, M. Akutsu, M. Mitsui, A. Nakajima, Chem. Phys. Lett. 422, 62 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    G. Balducci, A. Ciccioli, G. Gigli, J. Chem. Phys. 121, 7748 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L.T. Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    M.B. Cortie, A. Maaroof, G.B. Smith, P. Ngoepe, Curr. Appl. Phys. 6, 440 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Li, Y. Li, T. Cui, Y. Wang, L.J. Zhang, Y. Xie, Y.L. Niu, Y.M. Ma, G.T. Zou, J. Phys.: Condens. Matter 19, 425224 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    L.S. Hsu, Y.K. Wang, Y.L. Tai, J.F. Lee, Phys. Rev. B 72, 115115 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    L. Belpassi, F. Tarantelli, A. Sgamellotti, J. Phys. Chem. A 110, 4543 (2006)CrossRefGoogle Scholar
  37. 37.
    C. Majumder, A.K. Kandalam, P. Jena, Phys. Rev. B 74, 205437 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Frisch et al., GAUSSIAN 03, Revision E.01 (Gaussian, Inc., Wallingford CT, 2004)Google Scholar
  39. 39.
    P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86, 866 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmaker, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    A. Stangassinger, A.M. Knight, M.A. Duncan, J. Phys. Chem. A 103, 1547 (1999)CrossRefGoogle Scholar
  43. 43.
    U. Heiz, A. Vayloyan, E. Schumacher, J. Phys. Chem. 100, 15033 (1996)CrossRefGoogle Scholar
  44. 44.
    V. Piacente, K.A. Gingerich, High Temp. Sci. 9, 189 (1977)Google Scholar
  45. 45.
    R.F. Barrow, W.J.G. Gissane, D.W. Travis, Proc. R. Soc. Lond. A 287, 240 (1965)ADSCrossRefGoogle Scholar
  46. 46.
    J. Ruamps, Ann. Phys. 4, 1111 (1959)Google Scholar
  47. 47.
    G. Balducci, A. Ciccioli, G. Gigli, L.S. Kudin, Chem. Phys. Lett. 369, 449 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    K.P. Huber, G. Herzberg, Constants of Diatomic Molecules (van Nostrand Reinhold, New York, 1979)Google Scholar
  49. 49.
    A.M. Cuthill, D.J. Fabian, S. Shu-Shou-Shen, J. Phys. Chem. 77, 2008 (1973)CrossRefGoogle Scholar
  50. 50.
    K.A. Gingerich, G.D. Blue, J. Chem. Phys. 59, 185 (1973)ADSCrossRefGoogle Scholar
  51. 51.
    H.M. Lee, M. Ge, B.R. Sahu, P. Tarakeshwar, K.S. Kim, J. Phys. Chem. B 107, 9994 (2003)CrossRefGoogle Scholar
  52. 52.
    E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    R.G. Pearson, Chemical Hardness: Applications from Molecules to Solids (Wiley-VCH, Weinheim, 1997)Google Scholar
  54. 54.
    C. Jackschath, I. Rabin, W. Schulze, Ber. Bunsenges. Phys. Chem. 96, 1200 (1992)CrossRefGoogle Scholar
  55. 55.
    H. Chermette, J. Comput. Chem. 20, 129 (1999)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of ScienceEast China Institute of TechnologyNanchangP.R. China
  2. 2.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduP.R. China
  3. 3.International Centre for Materials PhysicsAcademia SinicaShenyangP.R. China

Personalised recommendations