Advertisement

High-order Bessel non-vortex beam of fractional type α: II. Vector wave analysis for standing and quasi-standing laser wave tweezers

  • Farid G. Mitri
Regular Article

Abstract

Based on the vector Maxwell’s equations and Lorenz’ gauge condition, full vector-wave derivations for the electric and magnetic fields components of a high-order Bessel non-vortex beam of fractional type α (HOBNVB-Fα) are presented. The field corresponds to the most generalized case of quasi-standing waves that reduce to perfect (i.e. equi-amplitude) standing waves or progressive waves with appropriate choice of the quasi-standing wave coefficient Υ. Particular emphasis is given on the polarization states of the vector potentials used to derive the field’s components and the transition from the progressive to perfect standing wave behavior. The results are of particular importance in the study of the optical/electromagnetic wave scattering, radiation force and torque in dual-beam optical laser-wave tweezers operating with this fractional type of non-diffracting non-vortex beams.

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    E. Fällman, O. Axner, Appl. Opt. 36, 2107 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    W. Grange, S. Husale, H.-J. Guntherodt, M. Hegner, Rev. Sci. Instrum. 73, 2308 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Liu, M. Yu, Opt. Express 17, 21680 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    T. Li, S. Kheifets, M.G. Raizen, Nat. Phys. 7, 527 (2011)CrossRefGoogle Scholar
  6. 6.
    J. Sung, S. Sivaramakrishnan, A.R. Dunn, J.A. Spudich, in Methods in Enzymology, edited by G.W. Nils (Academic Press, 2010), Vol. 475, p. 321Google Scholar
  7. 7.
    S. Chu, Rev. Mod. Phys. 70, 685 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    F.M. Fazal, S.M. Block, Nat. Photon. 5, 318 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, Nature 419, 145 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    X. Chu, Eur. Phys. J. D 66, 259 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    V.G. Shvedov, A.S. Desyatnikov, A.V. Rode, W. Krolikowski, Y.S. Kivshar, Opt. Express 17, 5743 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, Y.S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Gutierrez-Vega, C. Lopez-Mariscal, J. Opt. Appl. Opt. 10, 015009 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    C. Lopez-Mariscal, D. Burnham, D. Rudd, D. McGloin, J.C. Gutierrez-Vega, Opt. Express 16, 11411 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F.G. Mitri, IEEE Trans. Ultrason. Ferr. 57, 395 (2010)CrossRefGoogle Scholar
  16. 16.
    F.G. Mitri, Opt. Lett. 36, 606 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    F.G. Mitri, Opt. Lett. 38, 615 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    F.G. Mitri, Optik – Int. J. Light Electron Opt. (2013), http://dx.doi.org/10.1016/j.ijleo.2012.04.024
  19. 19.
    S.H. Tao, W.M. Lee, X.C. Yuan, Opt. Lett. 28, 1867 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    S.H. Tao, W.M. Lee, X.C. Yuan, Appl. Opt. 43, 122 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Tao, X.C. Yuan, J. Opt. Soc. Am. A 21, 1192 (2004)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    F.G. Mitri, Phys. Rev. A 85, 025801 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J.D. Jackson, Classical electrodynamics (Wiley, 1999), p. 240Google Scholar
  24. 24.
    J.P. Barton, D.R. Alexander, S.A. Schaub, J. Appl. Phys. 64, 1632 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    F.G. Mitri, IEEE Trans. Antennas Propag. 59, 4375 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    F.G. Mitri, Opt. Lett. 36, 766 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    G. Gouesbet, G. Grehan, Generalized Lorenz-Mie Theories, 1st edn. (Springer, 2011)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Farid G. Mitri
    • 1
  1. 1.Materials Physics and Applications Division, MPA-11, Sensors & Electrochemical Devices, Acoustics & Sensors Technology TeamLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations