Emission spectrum of a qubit in Rabi model in strong coupling regime

  • Wen-Wu Deng
  • Gao-Xiang LiEmail author
Regular Article


The analytical eigenenergies and eigenstates of the Rabi model are obtained approximately based on a unitary transformation and a generalized rotating-wave approximation (GRWA). Using these analytical expressions without the rotating wave approximation (RWA), we generalize the definition of the physical emission spectrum valid with the RWA in order to meet without the RWA with some modifications. Taking into account the counter-rotating wave terms and the intercrossing of energy level in the strong coupling regime, the physical emission spectrum of qubit is investigated. Different from the case with RWA, the multi-peak vacuum Rabi splitting, even when the qubit initially in its ground state and the bosonic field initially in vacuum, can emerge. These new features of physical emission spectrum originate from the effect of counter-rotating wave terms. Moreover, the intercrossing of energy level can also be observed in the strong coupling regime.


Quantum Optics 


  1. 1.
    M. Hofheinz, H. Wang, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 459, 546 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes, Nature 459, 960 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    A. Fedorov, A.K. Feofanov, P. Macha, P. Forn-Díaz, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105, 060503 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    G. Günter, A.A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. DeLiberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, Nature 458, 178 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Anappara, S. DeLiberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba, F. Beltram, Phys. Rev. B 79, 201303 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Todorov, A.M. Andrews, R. Colombelli, S. DeLiberato, C. Ciuti, P. Klang, G. Strasser, C. Sirtori, Phys. Rev. Lett. 105, 196402 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    P. Nataf, C. Ciuti, Phys. Rev. Lett. 107, 190402 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    I. Lizuain, J. Casanova, J.J. Garcia-Ripoll, J.G. Muga, E. Solano, Phys. Rev. A 81, 062131 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    I.I. Rabi, Phys. Rev. 51, 652 (1937)ADSCrossRefGoogle Scholar
  10. 10.
    C. Ciuti, G. Bastard, I. Carusotto, Phys. Rev. B 72, 115303 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    T. Niemczyk et al., Nat. Phys. 6, 772 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Casanova, G. Romero, I. Lizuain, J.J. Garcia-Ripoll, E. Solano, Phys. Rev. Lett. 105, 263603 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    E.K. Irish, Phys. Rev. Lett. 99, 173601 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    D. Braak, Phys. Rev. Lett. 107, 100401 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    I. Travěnec, Phys. Rev. A 85, 043805 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Peng, G.X. Li, Phys. Rev. A 45, 3289 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    A.T. Sornborger, A.N. Cleland, M.R. Geller, Phys. Rev. A 70, 052315 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    E.K. Irish, J. Gea-Banacloche, I. Martin, K.C. Schwab, Phys. Rev. B 72, 195410 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J. Hausinger, M. Grifoni, Phys. Rev. A 83, 030301 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S. He, C. Wang, Q.H. Chen, X.Z. Ren, T. Liu, K.L. Wang, Phys. Rev. A 86, 033837 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    H. Zheng, S.Y. Zhu, M.S. Zubairy, Phys. Rev. Lett. 101, 200404 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    X. Cao, J.Q. You, H. Zheng, F. Nori, New J. Phys. 13, 073002 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Q.H. Chen, Y. Yang, T. Liu, K.L. Wang, Phys. Rev. A 82, 052306 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C.J. Zhao, H. Zheng, Phys. Rev. A 82, 043844 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    G.X. Li, M. Luo, Z. Ficek, Phys. Rev. A 79, 053847 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    G.X. Li, Opt. Commun. 184, 397 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Peng, G.X. Li, P. Zhou, S. Swain, Phys. Rev. A 61, 063807 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    K. Zaheer, M.S. Zubairy, Phys. Rev. A 39, 2000 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    D.G. Lappas, M.V. Fedorov, J.H. Eberly, Phys. Rev. A 47, 1327 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Reithmaier et al., Nature 432, 197 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    T. Yoshie et al., Nature 432, 200 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    A. Wallraff et al., Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    I.G. Savenko, O.V. Kibis, I.A. Shelykh, Phys. Rev. A 85, 053818 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    F. Beaudoin, J.M. Gambetta, A. Blais, Phys. Rev. A 84, 043832 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    G.X. Li, J.S. Peng, Introduction to Modern Quantum Optics (World Scientific Press, Singapore, 1996)Google Scholar
  36. 36.
    C.J. Gan, H. Zheng, Eur. Phys. J. D 59, 473 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    G. Scalari et al., Science 335, 1323 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    J.H. Eberly, K. Wódkiewicz, J. Opt. Soc. Am. 67, 1252 (1977)ADSCrossRefGoogle Scholar
  39. 39.
    A. Ridolfo, M. Leib, S. Savasta, M.J. Hartmann, Phys. Rev. Lett. 109, 193602 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsHuazhong Normal UniversityWuhanP.R. China
  2. 2.Institute of Photonics and Photo-Technology, Hubei University of Science and TechnologyXianningP.R. China

Personalised recommendations