Advertisement

Hydrogen adsorption and dissociation on small AlnAu clusters: an electronic structure density functional study

  • Ling GuoEmail author
  • Shu-ying Li
  • Xiao Zhang
  • Rui-jun Zhang
  • Jian Guo
Regular Article

Abstract

We present density functional calculations of H2 adsorption and dissociation on small-sized Al n Au clusters for n = 1−13. The growth pattern for Al n Au (n = 2−5,7,12,13) clusters is Au atom occupying a peripheral position of Al n clusters. And the growth pattern for Al n Au (n = 6 and 10) clusters is Au-substituted Al n+1 clusters. It is found that the Au atom substituted the surface atom of Al n+1 cluster and occupies a peripheral position. H2 is easily physically absorbed on the top Au atom of Al n Au clusters with an end-on orientation rather than side-on orientation because of the more effective orbital overlap in the end-on orientation. The reaction of Al n Au with H2 would produce Al n AuH2 because of large exothermic energy changes and relatively small activation energies especially for Al3Au and Al7Au, which might serve as highly efficient and low-cost catalysts for hydrogen dissociation.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    H. Arakawa, M. Aresta, J.N. Armor, M.A. Barteau, E.J. Beckman, A.T. Bell, J.E. Bercaw, C. Creutz, E. Dinjus, D.A. Dixon, K. Domen, D.L. Dubois, J. Eckert, E. Fujita, D.H. Gibson, W.A. Goddard, D.W. Goodman, J. Keller, G.J. Kubas, H.H. Kung, J.E. Lyons, L.E. Manzer, T.J. Marks, K. Morokuma, K.M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W.M.H. Sachtler, L.D. Schmidt, A. Sen, G.A. Somoriai, P.C. Stair, B.R. Stults, W. Tumas, J. Chem. Rev. 101, 953 (2001)CrossRefGoogle Scholar
  2. 2.
    P. Fayet, A. Kaldor, D.M. Cox, J. Chem. Phys. 92, 254 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    A.M. Doyle, S.K. Shaikhutdinov, S.D. Jackson, H.J. Freund, J. Angew. Chem. Int. Ed. 42, 5240 (2003)CrossRefGoogle Scholar
  4. 4.
    T.J.D. Kumar, P. Tarakeshwar, J. Phys. Rev. B 79, 205415 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    X. Sheng, G. Zhao, L. Zhi, J. Phys. Chem. C 112, 17828 (2008)CrossRefGoogle Scholar
  6. 6.
    D.J. Henry, I. Yarovsky, J. Phys. Chem. A 113, 2565 (2009)CrossRefGoogle Scholar
  7. 7.
    L. Wang, J. Zhao, Z. Zhou, S.B. Zhang, Z. Chen, J. Comput. Chem. 30, 2509 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Varano, D.J. Henry, J. Phys. Chem. A 114, 3602 (2010)CrossRefGoogle Scholar
  9. 9.
    Q.L. Lu, J.G. Wan, J. Chem. Phys. 132, 224308 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P. Tarakeshwar, T.J.D. Kumar, N. Balakrishnan, J. Chem. Phys. 130, 114301 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S. Nonose, Y. Sone, K. Onodera, S. Sudo, K. Kaya, J. Chem. Phys. Lett. 164, 427 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakasuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, R. Hasegawa, M.J. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E.R. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, J.A. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 (Revision C02) (Gaussian, Inc., Pittsburgh, 2003)Google Scholar
  13. 13.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    R. Jin, S. Zhang, Y. Zhang, S. Huang, P. Wang, H. Tian, Int. J. Hydrogen Energy 36, 9069 (2011)CrossRefGoogle Scholar
  15. 15.
    O.A. Syzgantseva, P. Gonzalez-Navarrete, M. Calatayud, S. Bromley, C. Minot, J. Phys. Chem. C 115, 15890 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, J. Comput. Chem. 17, 49 (1996)CrossRefGoogle Scholar
  17. 17.
    C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90, 2154 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94, 5523 (1990)CrossRefGoogle Scholar
  19. 19.
    B.K. Rao, P. Jena, J. Chem. Phys. 111, 1890 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    X.H. Cheng, D.J. Ding, Y.G. Yu, M.X. Jin, Chin. J. Chem. Phys. 25, 169 (2012)CrossRefGoogle Scholar
  21. 21.
    M.X. Chen, X.H. Yan, S.H. Wei, J. Phys. Chem. A 111, 8659 (2007)CrossRefGoogle Scholar
  22. 22.
    L. Guo, J. Alloys Compd. 466, 463 (2008)CrossRefGoogle Scholar
  23. 23.
    V.A. Gorbunov, L.I. Kurkina, J. Bull. Russian Acad. Sci. Phys. 72, 515 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    H. Joe, M.E. Kent, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Morse, Chem. Rev. 86, 1049 (1986)CrossRefGoogle Scholar
  26. 26.
    B. Simard, P.A. Hackett, J. Mol. Spectrosc. 142, 310 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    B. Rosen, Spectroscopic Data Relative to Diatomic Molecules (Oxford University Press, New York, 1970)Google Scholar
  28. 28.
    K.A. Gingerich, G.D. Blue, J. Chem. Phys. 59, 185 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    R.Z. Rajendra, T. Baruah, J. Phys. Rev. A 64, 053202 (2001)CrossRefGoogle Scholar
  30. 30.
    S.M. Lang, T.M. Bernhardt, R.N. Barnett, B. Yoon, U. Landman, J. Am. Chem. Soc. 131, 8939 (2009)CrossRefGoogle Scholar
  31. 31.
    D.J. Henry, A. Varano, I. Yarovsky, J. Phys. Chem. A 113, 5832 (2009)CrossRefGoogle Scholar
  32. 32.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)CrossRefGoogle Scholar
  33. 33.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  34. 34.
    P.K. Chattaraj, S. Sengupta, J. Phys. Chem. 100, 16126 (1996)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ling Guo
    • 1
    Email author
  • Shu-ying Li
    • 1
  • Xiao Zhang
    • 1
  • Rui-jun Zhang
    • 1
  • Jian Guo
    • 2
  1. 1.School of Chemistry and Material ScienceShanxi Normal UniversityLinfenP.R. China
  2. 2.School of Management Science and EngineeringCentral University of Finance and EconomicsBeijingP.R. China

Personalised recommendations