Advertisement

Negentropy as a source of efficiency: a nonequilibrium quantum Otto cycle

  • Hai Li
  • Jian ZouEmail author
  • Wen-Li Yu
  • Lin Li
  • Bao-Ming Xu
  • Bin Shao
Regular Article

Abstract

We consider a single quantum mechanical particle confined to an one-dimensional (1D) infinite square well, and propose a nonequilibrium quantum Otto cycle (NQOC). Compared with the conventional quantum Otto engine (CQOE) investigated by [T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004); T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)], due to the effects of negentropy produced in the NQOC, many interesting features appear: (1) in general, the NQOC is capable of extracting more work, so it is more efficient; (2) the NQOC can operate even when T 1 = T 2 or T 1 < T 2, where T 1 (T 2) represents the temperature of hot (cold) bath; (3) in some cases, the NQOC can absorb heat from both baths and completely transforms them into work. These results demonstrate that the negentropy can be understood as an effective source of efficiency in quantum heat engines (QHEs) and meanwhile it is shown that the second law of thermodynamics is not violated. At last, we also show that the efficiency of NQOC reduces to that of classical Otto cycle in the classical limit.

Keywords

Atomic Physics 

References

  1. 1.
    Y.A. Cengel, M.A. Boles, Thermodynamics. An En-gineering Approach (McGraw-Hill, New York, 2001)Google Scholar
  2. 2.
    G. Cerefolini, Nanoscale Devices (Springer, Berlin, 2009)Google Scholar
  3. 3.
    H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    E. Geva, R. Kosloff, J. Chem. Phys. 97, 4398 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    S. Lloyd, Phys. Rev. A 56, 3374 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    R. Kosloff, E. Geva, J.M. Gordon, J. Appl. Phys. 87, 8093 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    M.O. Scully, Phys. Rev. Lett. 87, 220601 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Henrich, G. Mahler, M. Michel, Phys. Rev. E 75, 051118 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H.T. Quan, Phys. Rev. E 79, 041129 (2009)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.Z. He, J.C. Chen, B. Hua, Phys. Rev. E 65, 036145 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    F. Wu, L.G. Chen, F.R. Sun, C. Wu, Q. Li, Phys. Rev. E 73, 016103 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    F. Wu, L.G. Chen, F.R. Sun, C. Wu, F.Z. Guo, J. Appl. Phys. 99, 054904 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    T. Feldmann, R. Kosloff, Phys. Rev. E 61, 4774 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    T. Feldmann, R. Kosloff, Phys. Rev. E 70, 046110 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    F. Wu, L.G. Chen, S. Wu, F.R. Sun, C. Wu, J. Chem. Phys. 124, 214702 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    J.H. Wang, J.Z. He, Y. Xin, Phys. Scr. 75, 227 (2007)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    G. Thomas, R.S. Johal, Phys. Rev. E 83, 031135 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C.M. Bender, D.C. Brody, B.K. Meister, J. Phys. A 33, 4427 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    C.M. Bender, D.C. Brody, B.K. Meister, Proc. R. Soc. Lond. Ser. A 485, 1519 (2002)MathSciNetGoogle Scholar
  24. 24.
    C.M. Bender, D.C. Brody, B.K. Meister, Proc. R. Soc. A 46, 1733 (2005)Google Scholar
  25. 25.
    T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    H.T. Quan, Y.D. Wang, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. Lett. 97, 180402 (2006)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 73, 036122 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    H.T. Quan, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    J.H. Wang, J.Z. He, X. He, Phys. Rev. E 84, 041127 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    H. Dong, D.Z. Xu, C.Y. Cai, C.P. Sun, Phys. Rev. E 83, 061108 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    C.Y. Cai, H. Dong, C.P. Sun, Phys. Rev. E 85, 031114 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. Abe, S. Okuyama, Phys. Rev. E 83, 021121 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    S. Abe, Phys. Rev. E 83, 041117 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    R. Wang, J.H. Wang, J.Z. He, Y.L. Ma, Phys. Rev. E 86, 021133 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    E. Muñoz, F.J. Peña, Phys. Rev. E 86, 061108 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Lu, G.L. Long, Phys. Rev. E 85, 011125 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    H. Li, J. Zou, J.G. Li, B. Shao, L.A. Wu, Ann. Phys. 327, 2955 (2012)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    O. Abah, J. Ronagel, G. Jacob, S. Dener, F. Schmidt-Kaler, K. Singer, E. Lutz, arXiv:1205.1362v1Google Scholar
  42. 42.
    W.H. Zurek, arXiv:0301076v1Google Scholar
  43. 43.
    J.J. Park, K.H. Kim, T. Sagawa, S.W. Kim, arXiv:1302.3011v1Google Scholar
  44. 44.
    G.-F. Zhang, Eur. Phys. J. D 49, 123 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    H. Wang, S.Q. Liu, J.Z. He, Phys. Rev. E 79, 041113 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A.A. Svidzinsky, Proc. Natl. Acad. Sci. 108, 15097 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 50003 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    R.S. Johal, Phys. Rev. E 82, 061113 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    G. Thomas, R.S. Johal, Phys. Rev. E 85, 041146 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005)CrossRefGoogle Scholar
  52. 52.
    S. Deffner, E Lutz, Phys. Rev. Lett. 107, 140404 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    D. Abreu, U. Seifert, Phys. Rev. Lett. 108, 030601 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    M. Esposito, C. Van den Broeck, Europhys. Lett. 95, 40004 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    L. del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011)CrossRefGoogle Scholar
  56. 56.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    R. Baierlein, Thermal Physics, Computing (Cambridge University Press, 1999)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hai Li
    • 1
    • 2
  • Jian Zou
    • 1
    Email author
  • Wen-Li Yu
    • 3
  • Lin Li
    • 1
  • Bao-Ming Xu
    • 1
  • Bin Shao
    • 1
  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingP.R. China
  2. 2.School of Information and Electronic EngineeringShandong Institute of Business and TechnologyYantaiP.R. China
  3. 3.School of Computer Science and TechnologyShandong Institute of Business and TechnologyYantaiP.R. China

Personalised recommendations