Advertisement

Competitive solvation of K+ by C6H6 and H2O in the K+-(C6H6)n-(H2O)m (n = 1–4; m = 1–6) aggregates

  • Margarita Albertí
  • Noelia Faginas LagoEmail author
Regular Article

Abstract

The competitive solvation of the potassium ion by benzene and water is investigated at molecular level by means of Molecular Dynamics simulations on the K+-(C6H6) n -(H2O) m (n = 1–4; m = 1–6) ionic aggregates. The preference of K+ to bind C6H6 or H2O is investigated in the range of temperatures in which isomerisation processes are likely by adding water and benzene to the K+-(C6H6) n and K+-(H2O) m aggregates, respectively. Hydrogen bonds and the π-hydrogen bond, in spite of their weakness with respect to the K+-π and K+-H2O interactions, play an important role in stabilising different isomers, thus favouring isomerisation processes. Accordingly with experimental information it has been found that K+ bind preferably C6H6 rather than H2O and that the fragmentation of C6H6 is only observed for aggregates containing four molecules of benzene.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    K. Müller-Dethelfs, P. Hobza, Chem. Rev. 100, 143 (2000)CrossRefGoogle Scholar
  2. 2.
    J.L. Alonso, S. Antolínez, S. Bianco, A. Lesarri, J.C. López, W. Caminati, J. Am. Chem. Soc. 126, 3244 (2004)CrossRefGoogle Scholar
  3. 3.
    O.M. Cabarcos, C.J. Weinheimer, J.M. Lisy, J. Chem. Phys. 108, 5151 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    O.M. Cabarcos, C.J. Weinheimer, J.M. Lisy, J. Chem. Phys. 110, 8429 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Morais-Cabral, Y. Zhou, R. MacKinnon, Nature 414, 37 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    T.D. Vaden, J.M. Lisy, J. Phys. Chem. A 109, 3880 (2005)CrossRefGoogle Scholar
  7. 7.
    R.A. Kumpf, D.A. Dougherty, Science 261, 1708 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    R. Sa, W. Zhu, J. Shen, Z. Gong, J. Cheng, K. Chen, H. Jiang, J. Phys. Chem. B 110, 5094 (2006)CrossRefGoogle Scholar
  9. 9.
    J.C. Ma, D.A. Dougherty, Chem. Rev. 97, 1303 (1997)CrossRefGoogle Scholar
  10. 10.
    D.A. Dougherty, Science 271, 163 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    T.D. Vaden, J.M. Lisy, J. Chem. Phys. 123, 074302(1) (2005)ADSCrossRefGoogle Scholar
  12. 12.
    C.J. Weinheimer, J.M. Lisy, Int. J. Mass Spectrom. Ion Process. 159, 197 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    D.J. Miller, J.M. Lisy, J. Chem. Phys. 124, 184301(1) (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S. Tsuzuki, M. Yoshida, T. Uchimaru, M. Mikami, J. Phys. Chem. A 105, 769 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Felder, H.L. Jiang, W.L. Zhu, K.X. Chen, I. Silman, S.A. Botti, J.L. Sussman, J. Phys. Chem. A 105, 1326 (2001)CrossRefGoogle Scholar
  16. 16.
    S. Mecozzi, A.P. West, D.A. Dougherty, J. Am. Chem. Soc. 118, 2307 (1996)CrossRefGoogle Scholar
  17. 17.
    J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 4177 (1995)CrossRefGoogle Scholar
  18. 18.
    J.B. Nicholas, B.P. Hay, D.A. Dixon, J. Phys. Chem. A 103, 1394 (1999)CrossRefGoogle Scholar
  19. 19.
    D. Quiñonero, C. Garau, A. Frontera, P. Ballester, A. Costa, P.M. Deyà, J. Phys. Chem. A 109, 4632 (2005)CrossRefGoogle Scholar
  20. 20.
    A.F. Jalbout, L. Adamowicz, J. Chem. Phys. 116, 9672 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    F. Pirani, D. Cappelletti, G. Liuti, Chem. Phys. Lett. 350, 286 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    M. Albertí, A. Castro, A. Laganà, F. Pirani, M. Porrini, D. Cappelletti, Chem. Phys. Lett. 392, 514 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    M. Albertí, A. Castro, A. Laganà, M. Moix, F. Pirani, D. Cappelletti, G. Liuti, J. Phys. Chem. A 109, 2906 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, Theor. Chem. Acc. 123, 21 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Albertí, J. Phys. Chem. A 114, 2266 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, D. Cappelletti, C. Coletti, N. Re, J. Phys. Chem. A 110, 9002 (2006)CrossRefGoogle Scholar
  27. 27.
    C. Coletti, N. Re, J. Phys. Chem. A 110, 6563 (2006)CrossRefGoogle Scholar
  28. 28.
    C. Coletti, N. Re, J. Phys. Chem. A 113, 1578 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, C. Coletti, N. Re, J. Phys. Chem. A 113, 14606 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Liuti, F. Pirani, Chem. Phys. Lett. 122, 245 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    F. Pirani, M. Albertí, A. Castro, M. Moix, D. Cappelletti, Chem. Phys. Lett. 394, 37 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    J.M.C. Marques, J.L. Llanio-Trujillo, M. Albertí, A. Aguilar, F. Pirani, J. Phys. Chem. A 116, 4947 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Albertí, N. Faginas Lago, F. Pirani, Chem. Phys. 399, 232 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, J. Phys. Chem. A 116, 5480 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Albertí, N. Faginas Lago, J. Chem. Phys. A 116, 3094 (2012)CrossRefGoogle Scholar
  36. 36.
    P. Pirani, S. Brizi, L.F. Roncaratti, P. Casavecchia, D. Cappelletti, F. Vecchiocattivi, Phys. Chem. Chem. Phys. 10, 5489 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Albertí, A. Aguilar, D. Cappelletti, A. Laganà, F. Pirani, Int. J. Mass Spectrom. 280, 50 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    R. Cambi, D. Cappelletti, G. Liuti, F. Pirani, J. Chem. Phys. 95, 1852 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    G.C. Maitland, E.B. Smith, Chem. Phys. Lett. 22, 443 (1973)ADSGoogle Scholar
  40. 40.
    T.A. Halgren, J. Am. Chem. Soc. 114, 7827 (1992)CrossRefGoogle Scholar
  41. 41.
    M. Albertí, A. Aguilar, J.M. Lucas, F. Pirani, J. Phys. Chem. A 114, 11964 (2010)CrossRefGoogle Scholar
  42. 42.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 2005), http://webbook.nist.gov (retrieved February 25, 2013)
  43. 43.
    T.D. Vaden, C.J. Weinheimer, J.M. Lisy, J. Chem. Phys. 121, 3102 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    T.D. Vaden, J.M. Lisy, J. Chem. Phys. 124, 214315(1) (2006)ADSCrossRefGoogle Scholar
  45. 45.
    M. Albertí, A. Aguilar, M. Bartolomei, D. Cappelletti, A. Laganà, J.M. Lucas, F. Pirani, Phys. Scr. 78, 058108 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    N. Ohtomo, K. Arakawa, Bull. Chem. Soc. Jpn 53, 1789 (1980)CrossRefGoogle Scholar
  47. 47.
    G.W. Neilson, N.T. Skippe, Chem. Phys. Lett. 114, 35 (1985)ADSCrossRefGoogle Scholar
  48. 48.
    T.T. Ikeda, M. Boero, K. Terakura, J. Chem. Phys. 126, 034501 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    S.A. Clough, Y. Beers, G.P. Klein, L.S. Rothman, J. Chem. Phys. 59, 2254 (1973)ADSCrossRefGoogle Scholar
  50. 50.
    M. Carrillo-Tripp, H. Saint-Martin, I. Ortega-Blake, J. Chem. Phys. 118, 7062 (2003) and references thereinADSCrossRefGoogle Scholar
  51. 51.
    H.M. Lee, J. Kim, S. Lee, B. Mhin, K.S. Kim, J. Chem. Phys. 111, 3995 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    J. Mähler, I. Persson, Inorg. Chem. 51, 425 (2012) and references thereinCrossRefGoogle Scholar
  53. 53.
    F. Schulz, B. Hartke, Chem. Phys. Chem. 3, 98 (2002)CrossRefGoogle Scholar
  54. 54.
    J.L. Llanio-Trujillo, J.M.C. Marques, F.B. Pereira, J. Phys. Chem. A 115, 2130 (2011)CrossRefGoogle Scholar
  55. 55.
    M. Albertí, N. Faginas Lago, A. Laganà, F. Pirani, Phys. Chem. Chem. Phys. 13, 8422 (2011)CrossRefGoogle Scholar
  56. 56.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  57. 57.
    J. Sunner, K. Nishizawa, P. Kebarle, J. Phys. Chem. 85, 1814 (1981)CrossRefGoogle Scholar
  58. 58.
    S.F. Boys, R. Bernardi, Mol. Phys. 19, 553 (1970)ADSCrossRefGoogle Scholar
  59. 59.
    J.C. Amicangelo, P.B. Armentrout, J. Phys. Chem. A 104, 11420 (2000)CrossRefGoogle Scholar
  60. 60.
    J.C. Amicangelo, P.B. Armentrout, Int. J. Mass Spectrom. 212, 301 (2001)CrossRefGoogle Scholar
  61. 61.
    M. Paolantoni, N. Faginas Lago, M. Albertí, A. Laganà, J. Phys. Chem. A 113, 15100 (2009)CrossRefGoogle Scholar
  62. 62.
    N. Faginas Lago, F. Huarte Larrañaga, M. Albertí, Eur. Phys. J. D 55, 75 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    M. Albertí, A. Aguilar, J.M. Lucas, A. Laganà, F. Pirani, J. Phys. Chem. A 111, 1780 (2007)CrossRefGoogle Scholar
  64. 64.
    F. Huarte-Larragaña, A. Aguilar, J.M. Lucas, M. Albertí, J. Phys. Chem. A 111, 8072 (2007)CrossRefGoogle Scholar
  65. 65.
    S. Suzuki, P.G. Green, R.E. Bumgarner, S. Dasgupta, W.A. Godard III, G.A. Blake, Science 257, 942 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IQTCUB, Departament de Química Física, Universitat de BarcelonaBarcelonaSpain
  2. 2.Dipartimento di Chimica, Università di PerugiaPerugiaItaly

Personalised recommendations