Advertisement

Thermal stability of uni-size Pt cluster disk constructed on silicon substrate

  • Nobuyuki Fukui
  • Hisato Yasumatsu
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Thermal stability of a uni-size platinum cluster disk, Pt30, constructed on a silicon (111) surface was investigated in a temperature range from room temperature to 773 K by means of a scanning tunneling microscope (STM). The apparent height and diameter and the number density of the cluster disks were obtained from the STM images as a function of the heating temperature. According to the statistical analysis of these specific values, it has been concluded that both the cluster disk and the neighboring substrate surface are stable up to 673 K, then they start being decomposed at the higher temperatures.

Keywords

Scanning Tunneling Microscope Tunneling Current Scanning Tunneling Microscope Image Apparent Height Sequential Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nanocatalysis, edited by U. Heiz, U. Landman (Springer, Berlin, 2007)Google Scholar
  2. 2.
    U. Heiz, F. Vanolli, A. Sanchez, W.D. Schneider, J. Am. Chem. Soc. 120, 9668 (1998)CrossRefGoogle Scholar
  3. 3.
    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    U. Busolt, E. Cottancin, L. Socaciu, H. Röhr, T. Leisner, L. Wöste, Eur. Phys. J. D 16, 297 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Carroll, R.E. Palmer, P.A. Mulheran, S. Hobday, R. Smith, Appl. Phys. A 67, 613 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    W. Yamaguchi, J. Murakami, Chem. Phys. Lett. 378, 521 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    T. Hayakawa, H. Yasumatsu, T. Kondow, Eur. Phys. J. D 52, 95 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    T. Hayakawa, H. Yasumatsu, J. Nanoparticle Res. 14, 1022 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Yasumatsu, T. Kondow, Rep. Prog. Phys. 66, 1783 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Carroll, S.G. Hall, R.E. Palmer, Phys. Rev. Lett. 81, 3715 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    B. Wang, B. Yoon, M. König, Y. Fukamori, F. Esch, U. Heiz, Nano Lett. 12, 5907 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H.-J. Freund, Chem. Eur. J. 16, 9384 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    X. Lin, N. Nilius, M. Sterrer, P. Koskinen, H. Häkkinen, H.-J. Freund, Phys. Rev. B 81, 153406 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    X. Lin, N. Nilius, H.-J. Freund, M. Walter, P. Frondelius, K. Honkala, H. Häkkinen, Phys. Rev. Lett. 102, 206801 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    H. Yasumatsu, T. Hayakawa, S. Koizumi, T. Kondow, J. Chem. Phys. 123, 124709 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H. Yasumatsu, T. Hayakawa, T. Kondow, J. Chem. Phys. 124, 014701 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    H. Yasumatsu, T. Hayakawa, T. Kondow, Chem. Phys. Lett. 487, 279 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    H. Yasumatsu, P. Murugan, Y. Kawazoe, Phys. Stat. Sol. B 6, 1193 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Yasumatsu, N. Fukui, submitted to J. Phys. Conf. Ser.Google Scholar
  20. 20.
    R. Lamber, N.I. Jaeger, J. Appl. Phys. 70, 457 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    A.R. Howells, L. Hung, G.S. Chottiner, D.A. Scherson, Solid State Ion. 150, 53 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Klimenkov, H. Kuhlenbeck, S.A. Nepijko, Surf. Sci. 539, 31 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    D. Wang, S. Penner, D.S. Su, G. Rupperechter, K. Hayek, R. Schlogl, J. Catal. 219, 434 (2003)CrossRefGoogle Scholar
  24. 24.
    R.E. Winams, S. Vajda, B. Lee, S.J. Riley, S. Seifert, G.Y. Tikhonoy, N.A. Tomczyk, J. Phys. Chem. B 108, 18105 (2004)CrossRefGoogle Scholar
  25. 25.
    J.S. Rattiff, S.A. Tenney, X. Hu, S.F. Conner, S. Ma, D.A. Chen, Langmuir 25, 216 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Naitabdi, F. Behafarid, B.R. Cuenya, Appl. Phys. Lett. 94, 083102 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skglundh, J. Sehested, S. Helveg, J. Am. Chem. Soc. 132, 7968 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Bonanni, K. Aït-Mansour, M. Hungentobler, H. Brune, W. Harbich, Eur. Phys. J. D 63, 241 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Watanabe, X. Wu, H. Hirata, N. Isomura, Catal. Sci. Technol. 1, 1490 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Bonanni, K. Aït Mansour, W. Harbich, H. Brune, J. Am. Chem. Soc. 134, 3445 (2012)CrossRefGoogle Scholar
  31. 31.
    F. Behafarid, B. Roldan Cuenya, Surf. Sci. 606, 908 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    G. Larrieu, E. Dubois, X. Wallart, X. Baie, J. Katcki, J. Appl. Phys. 94, 7801 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.East Tokyo Laboratory, Genesis Research InstituteChibaJapan
  2. 2.Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo Laboratory, Genesis Research InstituteChibaJapan

Personalised recommendations