Advertisement

The role of the C2 gas in the emergence of C60 from the condensing carbon vapour

  • Shoaib AhmadEmail author
  • Kashif Yaqub
  • Afshan Ashraf
Regular Article

Abstract

A model has been developed that illustrates C60’s emergence from the condensing carbon vapour. It is shown to depend upon (i) the decreasing heats of formation for larger cages; (ii) exponentially increasing number of isomers for fullerenes that are larger than C60; (iii) large cages’ buckling induced by the pentagon-related protrusions that initiate fragmentation; (iv) the structural instability-induced fragmentation that shrinks large cages via C x → C x−2 + C2; and (v) an evolving gas of C2 that is crucial to the whole process. The model describes a mechanism for the provision and presence of plenty of C2s during the formation and fragmentation processes. Fullerenes portrayed as 3D rotors have partition functions describing ensemble’s entropy as a function of the fragmentation sequence. The bottom-up formations of large cages followed by the top-down cage shrinkage are shown to be stable, dynamical processes that lead to the C60 dominated fullerene ensemble.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    H.W. Kroto, K. McKay, Nature 331, 328 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    R.F. Curl, R.E. Smalley, Sci. Am. 265, 32 (1991)CrossRefGoogle Scholar
  3. 3.
    J.R. Heath, ACS Symp. Ser. 481, 1 (1991)CrossRefGoogle Scholar
  4. 4.
    D. Bakowies, W. Thiel, J. Am. Chem. Soc. 113, 3704 (1991) CrossRefGoogle Scholar
  5. 5.
    D.H. Robertson, J. Phys. Chem. 96, 6133 (1992) CrossRefGoogle Scholar
  6. 6.
    T. Wakabayashi, Y. Achiba, Chem. Phys. Lett. 190, 465 (1992) ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Elkund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic Press, San Diego, 1996), Chap. 6Google Scholar
  8. 8.
    S. Mauyama, Y. Yamaguchi, Chem. Phys. Lett. 286, 343 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    S. Irle, G. Zheng, Z. Wang, K. Morokuma, Nano Lett. 3, 1657 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S. Irle, G. Zheng, Z. Wang, K. Morokuma, J. Phys. Chem. B 110, 14531 (2006) CrossRefGoogle Scholar
  11. 11.
    P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, Oxford, 1995)Google Scholar
  12. 12.
    R.E. Smalley, Nobel Lectures, Chemistry 1996–2000, edited by I. Grenthe (World Scientific, Singapore, 2003) Google Scholar
  13. 13.
    S.D. Khan, S. Ahmad, Nanotechnology 17, 4654 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Wales, Chem. Phys. Lett. 141, 478 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Austin, P.W. Fowler, D.E. Manolopoulos, G. Orlandi, F. Zerbetto, J. Phys. Chem. 99, 8076 (1995) CrossRefGoogle Scholar
  16. 16.
    D.J. Wales, M.A. Miller, T.R. Walsh, Nature 394, 768 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Kumeda, D.J. Wales, Chem. Phys. Lett. 374, 121 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Wales, Chem. Phys. Lett. 285, 330 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    A.J. Stone, D.J. Wales, Chem. Phys. Lett. 128, 501 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    S. Ahmad, J. Chem. Phys. 116, 3396 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    S. Ahmad, Nanotechnology 16, 1739 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, Statistical Mechanics, 3rd edn. (Butterworth-Henemann, Oxford, 1980), Chaps. 2 and 4 Google Scholar
  23. 23.
    C.W. Allen, Astrophysical Quantities, 3rd edn. (The Athlone Press, London, 1997), p. 47Google Scholar
  24. 24.
    K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An introduction to Dynamical Systems (Springer-Verlag, New York, 1997), pp. 193–227Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Government College University (GCU), CASPLahorePakistan
  2. 2.Pakistan Institute of Nuclear Science and Technology (PINSTECH)IslamabadPakistan

Personalised recommendations