Advertisement

Production of Fe clusters by collisions of metal vapour with supersonic argon beams

  • Atea Akraiam
  • Klaus von HaeftenEmail author
Regular Article
  • 180 Downloads
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The growth of Fe clusters by collisions of Fe atoms with Ar atoms flowing in a supersonic beam was investigated by Fe mass flux measurements and transmission electron (TEM) microscopy. Moderate Ar densities of the order of 1 × 1020 m-3 were sufficient to cause cluster growth which was attributed to the low temperature of the Ar beam. TEM imaging of deposited clusters revealed diameter distributions from 2 to 10 nm depending on the deposition time. Extrapolation to zero deposition time revealed a cluster size of 2.4 nm grown in the gas phase. Growth on the surface was attributed to diffusion of single Fe atoms which are co-deposited with the clusters in the process and which agglomerate when they hit a cluster.

Keywords

Metal Vapour Stagnation Pressure Transmission Electron Micro Mach Disk Cluster Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, in Springer Series in Material Science (Springer, Berlin, Heidelberg, 1995), Vol. 25Google Scholar
  3. 3.
    C. Binns, Surf. Sci. Rep. 44, 1 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    K. Wegner, P. Piseri, H. Tafreshi, P. Milani, J. Phys. D 39, R439 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    K. Sattler, J. Mühlbach, E. Recknagel, Phys. Rev. Lett. 45, 821 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    F. Frank, W. Schulze, B. Tesche, J. Urban, B. Winter, Surf. Sci. 156, 90 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    J. Urban, B. Tesche, Thin Solid Films 137, 325 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    O. Hagena, Z. Phys. D: At. Mol. Clusters 4, 291 (1987)CrossRefGoogle Scholar
  10. 10.
    O. Hagena, Z. Phys. D: At. Mol. Clusters 17, 157 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    O. Hagena, Z. Phys. D: At. Mol. Clusters 20, 425 (1991)CrossRefGoogle Scholar
  12. 12.
    J. Gspann, Z. Phys. D: At. Mol. Clusters 20, 421 (1991)CrossRefGoogle Scholar
  13. 13.
    M. Kappes, R. Kunz, E. Schumacher, Chem. Phys. Lett. 91, 413 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    W. Knight, K. Clemenger, W. de Heer, W. Saunders, M. Chou, M. Cohen, Phys. Rev. Lett. 52, 2141 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    J. Gspann, Z. Phys. D: At. Mol. Clusters 3, 143 (1986)CrossRefGoogle Scholar
  16. 16.
    M. Sakurai, K. Watanabe, K. Sumiyama, K. Suzuki, J. Chem. Phys. 111, 235 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    K. Edmonds, C. Binns, S. Baker, S. Thornton, C. Norris, J. Goedkoop, M. Finazzi, N. Brookes, Phys. Rev. B 60, 472 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    R.P. Methling, V. Senz, E.D. Klinkenberg, Th. Diederich, J. Tiggesbäumker, G. Holzhüter, J. Bansmann, K.H. Meiwes-Broer, Eur. Phys. J. D 16, 173 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    R.C.M. Bosch, H.C.W. Beijerinck, P. Van der Straten, K.A.H. van Leeuwen, Eur. Phys. J. Appl. Phys. 18, 221 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    I. Yamada, T. Takagi, Thin Solid Films 80, 105 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    J. Gspann, Nucl. Instr. Methods Phys. Res. B: Beam Interact. Mater. Atoms 37, 775 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    J. Gspann, Nucl. Instr. Methods Phys. Res. B: Beam Interact. Mater. Atoms 80, 1336 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    J. Gspann, Z. Phys. D: At. Mol. Clusters 26, 174 (1993)CrossRefGoogle Scholar
  24. 24.
    P. Gatz, O. Hagena, Appl. Surf. Sci. 91, 169 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    U. Even, J. Jortner, D. Noy, N. Lavie, C. Cossart-Magos, J. Chem. Phys. 112, 8068 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    K. Nauta, R.E. Miller, Science 283, 1895 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    A. Bartelt, J.D. Close, F. Federmann, N. Quaas, J.P. Toennies, Phys. Rev. Lett. 77, 3525 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    G. Chaubey, V. Nandwana, N. Poudyal, C. Rong, J. Liu, Chem. Mater. 20, 475 (2007)CrossRefGoogle Scholar
  29. 29.
    L. Babes, B. Denizot, G. Tanguy, J. Le Jeune, P. Jallet, J. Coll. Interf. Sci. 212, 474 (1999)CrossRefGoogle Scholar
  30. 30.
    A. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)CrossRefGoogle Scholar
  31. 31.
    C. Hadjipanayis, M. Bonder, S. Balakrishnan, X. Wang, H. Mao, G. Hadjipanayis, Small 4, 1925 (2008)CrossRefGoogle Scholar
  32. 32.
    K. Hayashi, M. Moriya, W. Sakamoto, T. Yogo, Chem. Mater. 21, 1318 (2009)CrossRefGoogle Scholar
  33. 33.
    K. von Haeften, S. Rudolph, I. Simanovski, M. Havenith, R. Zillich, K. Whaley, Phys. Rev. B 73, 054502 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    R. Karnbach, M. Joppien, J. Stapelfeldt, J. Wörmer, T. Möller, Rev. Sci. Instrum. 64, 2838 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    L. Bardotti, F. Tournus, P. Mélinon, M. Pellarin, M. Broyer, Phys. Rev. B 83, 035425 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    F. Tournus, L. Bardotti, V. Dupuis, J. Appl. Phys. 109, 114309 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    R. Alayan, L. Arnaud, M. Broyer, E. Cottancin, J. Lerme, S. Marhaba, J. Vialle, M. Pellarin, Phys. Rev. B 76, 075424 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    R. Alayan, L. Arnaud, M. Broyer, E. Cottancin, J. Lermé, J. Vialle, M. Pellarin, Phys. Rev. B 73, 125444 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    L. Bardotti, F. Tournus, M. Pellarin, M. Broyer, P. Mélinon, V. Dupuis, Surf. Sci. 606, 110 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    T.E. Gough, M. Mengel, P.A. Rowntree, G. Scoles, J. Chem. Phys. 83, 4958 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    M. Lewerenz, B. Schilling, J.P. Toennies, J. Chem. Phys. 102, 8191 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    T. Diederich, T. Döppner, J. Braune, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 86, 4807 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    V. Mozhayskiy, M. Slipchenko, V. Adamchuk, A. Vilesov, J. Chem. Phys. 127, 094701 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Möller, K. Fink, J. Phys. Chem. A 25, 7316 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Leicester, Department of Physics and Astronomy, University RoadLeicesterUK

Personalised recommendations