Advertisement

A new target design for laser shock-compression studies of carbon reflectivity in the megabar regime

  • Stefano Paleari
  • Dimitri BataniEmail author
  • Tommaso Vinci
  • Roberto Benocci
  • Keisuke Shigemori
  • Yoichiro Hironaka
  • Toshihiko Kadono
  • Akiyuki Shiroshita
  • Paolo Piseri
  • Stefano Bellucci
  • Alfonso Mangione
  • Abutrab Aliverdiev
Regular Article

Abstract

A new design for targets employed in laser induced shock-compression experiments is presented. Numerical simulations to optimize target parameters and to clarify shock dynamics are realized. The experiments proved the new scheme is reliable and appropriate for reflectivity measurements of thermodynamical states lying out of the standard graphite or diamond Hugoniot: the final state reached in compression can be varied tuning the carbon layer characteristics (initial density and thickness) and the laser intensity, with the possibility to determine the reflectivity of carbon and the position on the phase diagram. An increase of reflectivity in carbon has been observed at 260 GPa and 14 000 K while no increase in reflectivity is found at 200 GPa and 20 000 K.

Keywords

Plasma Physics 

References

  1. 1.
    M. Togaya, Phys. Rev. Lett. 79, 2474 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    M. Grumbach, R. Martin, Phys. Rev. B: Condens. Matter 54, 15730 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    X. Wang, S. Scandolo, R. Car, Phys. Rev. Lett. 95, 1 (2005)Google Scholar
  4. 4.
    J. Biener et al., Nucl. Fusion 49, 112001 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    T. Guillot, Science 286, 72 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    M. Ross, Nature 292, 435 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    F. Ancilotto, G.L. Chiarotti, S. Scandolo, E. Tosatti, Science 275, 1288 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    F. Bundy, W. Bassett, M. Weathers, R. Hemley, H. Mao, A. Goncharov, Carbon 34, 141 (1996)CrossRefGoogle Scholar
  9. 9.
    M.V. Thiel, F. Ree, Phys. Rev. B 48, 3591 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Correa, S.A. Bonev, G. Galli, Proc. Natl. Acad. Sci. USA 103, 1204 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    W. Gust, Phys. Rev. B 22, 4744 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Wang, Z.K. Liu, L.Q. Chen, L. Burakovsky, D. Preston, W. Luo, B. Johansson, R. Ahuja, Phys. Rev. B 71, 1 (2005)Google Scholar
  13. 13.
    N. Romero, W. Mattson, Phys. Rev. B 76, 214113 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    N. Ozaki et al., Phys. Plasmas 11, 1600 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    V. Zvorykin, V. Bakaev, I. Lebo, G. Sychugov, Laser Part. Beams 22, 51 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    D. Batani et al., Laser Part. Beams 25, 127 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    D.G. Hicks, T.R. Boehly, P.M. Celliers, D.K. Bradley, J.H. Eggert, R.S. McWilliams, R. Jeanloz, G.W. Collins, Phys. Rev. B 78, 174102 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    D.K. Bradley, J.H. Eggert, R.F. Smith, S.T. Prisbrey, D.G. Hicks, D.G. Braun, J. Biener, A.V. Hamza, R.E. Rudd, G.W. Collins, Phys. Rev. Lett. 102, 075503 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    D. Batani et al., Laser Part. Beams 21, 481 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    J.H. Eggert, D.G. Hicks, P.M. Celliers, D.K. Bradley, R.S. McWilliams, R. Jeanloz, J.E. Miller, T.R. Boehly, G.W. Collins, Nat. Phys. 6, 40 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Das, S. Menon, Phys. Rev. B 79, 045126 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    K. Driver, B. Militzer, Phys. Rev. Lett. 108, 115502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    N. Nissim, S. Eliezer, M. Werdiger, L. Perelmutter, Laser Part. Beams, 1 (2012)Google Scholar
  24. 24.
    D. Batani et al., Phys. Rev. Lett. 92, 065503 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    K. Shigemori, K. Otani, T. Shiota, H. Azechi, K. Mima, Jpn J. Appl. Phys. 45, 4224 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    R.E. Setchell, J. Appl. Phys. 91, 2833 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    P. Milani, P. Piseri, E. Barborini, A. Podesta, C. Lenardi, J. Vac. Sci. Technol. A 19, 2025 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    N. Miyanaga, M. Nakatsuka, H. Azechi, H. Shiraga, T. Kanabe, H. Asahara, H. Daido, H. Fujita, K. Fujita, in Proc. of 18th IAEA International Conference on Fusion Energy, Sorrento, Italy, 2001 Google Scholar
  29. 29.
    C. Yamanaka, Fusion Eng. Design 44, 1 (1999)CrossRefGoogle Scholar
  30. 30.
    S. Dixit, M. Feit, M. Perry, H. Powell, Opt. Lett. 21, 1715 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    W.H. DuMouchel, F.L. O’Brien, in Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface, Alexandria, VA, 1989, pp. 297–301Google Scholar
  32. 32.
    M. Caceci, Anal. Chem. 61, 2324 (1989)CrossRefGoogle Scholar
  33. 33.
    Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamical Phenomena (Dover, New York, 2002), Chap. 11Google Scholar
  34. 34.
    J. Clérouin, Y. Laudernet, V. Recoules, S. Mazevet, J. Phys. A 39, 4387 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    D.G. Hicks, T.R. Boehly, P.M. Celliers, J.H. Eggert, E. Vianello, D.D. Meyerhofer, G.W. Collins, Phys. Plasmas 12, 082702 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    F. Wooten, Optical Properties of Solids (Academic Press, New York, 1973)Google Scholar
  37. 37.
    R. Ramis, R. Schmalz, J. Meyer-Ter-Vehn, Comput. Phys. Commun. 49, 475 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    S.P. Lyon, J.D. Johnson, Los Alamos National Laboratory Report LA-UR-92-3407, 1992Google Scholar
  39. 39.
    A. Aliverdiev, D. Batani, R. Dezulian, T. Vinci, Radiat. Eff. Defects Sol. 165, 566 (2010)CrossRefGoogle Scholar
  40. 40.
    R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, Phys. Fluids 31, 3059 (1988)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    A.J. Kemp, J. Meyer-ter-Vehn, Nucl. Instrum. Methods Phys. Res. A 415, 674 (1998)Google Scholar
  42. 42.
    Z. Hashin, J. Appl. Mech. 29, 143 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    D.P.H. Hasselman, J. Am. Ceram. Soc. 45, 452 (1962)CrossRefGoogle Scholar
  44. 44.
    S.R.P. Silva (ed.), Properties of Amorphous Carbon, EMIS Datareviews Series (INSPEC, London, 2003), Vol. 29Google Scholar
  45. 45.
    C.E. Bottani, A.C. Ferrari, A. Li Bassi, P. Milani, P. Piseri, Europhys. Lett. 42, 431 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    S.Y. Boey, D.J. Bacon, Carbon 24, 557 (1986)CrossRefGoogle Scholar
  47. 47.
    C. Casari, A. Li Bassi, C. Bottani, E. Barborini, P. Piseri, A. Podestà, P. Milani, Phys. Rev. B 64, 1 (2001)CrossRefGoogle Scholar
  48. 48.
    F. Dahmani, T. Kerdja, Phys. Rev. A 44, 2649 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    J. Lindl, Phys. Plasmas 2, 3933 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    R. Narasimman, K. Prabhakaran, Carbon 50, 5583 (2012)CrossRefGoogle Scholar
  51. 51.
    A. Zani, D. Dellasega, V. Russo, M. Passoni, Carbon 56, 358 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefano Paleari
    • 1
  • Dimitri Batani
    • 2
    Email author
  • Tommaso Vinci
    • 3
  • Roberto Benocci
    • 1
  • Keisuke Shigemori
    • 4
  • Yoichiro Hironaka
    • 4
  • Toshihiko Kadono
    • 4
  • Akiyuki Shiroshita
    • 4
  • Paolo Piseri
    • 5
  • Stefano Bellucci
    • 6
  • Alfonso Mangione
    • 7
  • Abutrab Aliverdiev
    • 8
  1. 1.Dipartimento di Fisica G.OcchialiniUniversità di Milano BicoccaMilanItaly
  2. 2.CEA, CNRS, CELIA (Centre Laser Intense at Applications), UMR 5107University BordeauxTalenceFrance
  3. 3.Laboratoire pour l’Utilisation des Lasers Intenses, UMR 7605CNRS-CEA-ÉcolePolytechnique-Paris VIPalaiseauFrance
  4. 4.Institute of Laser EngineeringOsaka UniversityOsakaJapan
  5. 5.Dipartimento di FisicaUniversità degli Studi di MilanoMilanItaly
  6. 6.INFN-Laboratori Nazionali di FrascatiFrascatiItaly
  7. 7.Institute of Advanced Technologies - Palazzo Presidenza ProvinciaTrapaniItaly
  8. 8.Institute for Geothermal Researches DSC of Russian Academy of Sciences - Pr. Shamilya 39AMakhachkalaRussia

Personalised recommendations