Advertisement

Characterization of correlations in two-fermion systems based on measurement induced disturbances

  • Ana P. MajteyEmail author
  • C. ZanderEmail author
  • Angel R. PlastinoEmail author
Regular Article

Abstract

We introduce an approach for the characterization of quantum correlations in two-fermion systems based upon the state disturbances generated by the measurement of “local” observables (that is, quantum observables represented by one-body operators). This approach leads to a concept of quantum correlations in systems of identical fermions different from entanglement.

Keywords

Quantum Information 

References

  1. 1.
    G.C. Ghirardi, L. Marinatto, T. Weber, J. Stat. Phys. 108, 49 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    G.C. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J. Naudts, T. Verhulst, Phys. Rev. A 75, 062104 (2007)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    R.J. Yañez, A.R. Plastino, J.S. Dehesa, Eur. Phys. J. D 56, 141 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    P.A. Bouvrie, A.P. Majtey, A.R. Plastino, P. Sánchez-Moreno, J.S. Dehesa, Eur. Phys. J. D 66, 15 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    P. Lévay, P. Vrana, Phys. Rev. A 78, 022329 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Borras, A.R. Plastino, M. Casas, A. Plastino, Phys. Rev. A 78, 052104 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    P. Lévay, S. Nagy, J. Pipek, Phys. Rev. A 72, 022302 (2005)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein, Ann. Phys. 299, 88 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    A.R. Plastino, D. Manzano, J.S. Dehesa, Europhys. Lett. 86, 20005 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    C. Zander, A.R. Plastino, Phys. Rev. A 81, 062128 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    C. Zander, A.R. Plastino, M. Casas, A. Plastino, Eur. Phys. J. D 66, 14 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    J. Schliemann, J.I. Cirac, M. Kus, M. Lewenstein, D. Loss, Phys. Rev. A 64, 022303 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    A.D. Gottlieb, N.J. Mauser, Phys. Rev. Lett. 95, 123003 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    V.C.G. Oliveira, H.A.B. Santos, L.A.M. Torres, A.M.C. Souza, Int. J. Quant. Inf. 6, 379 (2008)zbMATHCrossRefGoogle Scholar
  17. 17.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    V. Vedral, Phys. Rev. Lett. 90, 050401 (2003)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M.D. Lang, C.M. Caves, Phys. Rev. Lett. 105, 150501 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Luo, Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    S. Luo, Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    N. Li, S. Luo, Phys. Rev. A 78, 024303 (2008)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    N. Li, S. Luo, Z. Zhang, J. Phys. A 40, 11361 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    L. Roa, J.C. Retamal, M. Alid-Vaccarezza, Phys. Rev. Lett. 107, 080401 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    A.P. Majtey, A.R. Plastino, A. Plastino, Physica A 391, 2491 (2012)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    A. SaiToh, R. Rahimi, M. Nakahara, Phys. Rev. A 77, 052101 (2008)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    R. Rahimi, A. SaiToh, Phys. Rev. A 82, 022314 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S. Wu, U.V. Poulsen, K. Mølmer, Phys. Rev. A 80, 032319 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Auyuanet, L. Davidovich, Phys. Rev. A 82, 032112 (2010)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    E. Knill, R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    R.P. Feynman, The Theory of Fundamental Processes (W.A. Benjamin, New York, 1962)Google Scholar
  37. 37.
    V. Devanathan, Angular Momentum Techniques in Quantum Mechanics (Kluwer Academic Publishers, New York, 2002)Google Scholar
  38. 38.
    A. Wehrl, Rev. Mod. Phys. 50, 221 (1978)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    M.A. Nielsen, J. Kempe, Phys. Rev. Lett. 86, 5184 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    R. Rossignoli, N. Canosa, L. Ciliberti, Phys. Rev. A 82, 052342 (2010)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    N. Gisin, Phys. Lett. A 210, 151 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto Carlos I de Física Teórica y Computacional and Departamento de Física Atómica Molecular y Nuclear, Universidad de GranadaGranadaSpain
  2. 2.Physics Department, University of PretoriaPretoriaSouth Africa
  3. 3.Universidad Nacional de La Plata UNLP-CREG-CONICETLa PlataArgentina

Personalised recommendations