Advertisement

Ab initio and anion photoelectron studies of Rhn (n = 1 − 9) clusters

  • Marcela R. BeltránEmail author
  • Fernando Buendía Zamudio
  • Vikas Chauhan
  • Prasenjit Sen
  • Haopeng Wang
  • Yeon Jae Ko
  • Kit Bowen
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Anion photoelectron spectroscopy (PES) and ab initio calculations have been used to identify the unique structural, electronic, and magnetic properties of both neutral and anionic Rh n (n = 1 − 9) free standing clusters. Negative ion photoelectron spectra are presented for electron binding energies up to 3.493 eV. We discuss our computational results in the context of the PES experiment, in which the calculated electron affinities and vertical detachment energies are in good agreement with the measured values. Theoretically, we investigate the low-lying energy structures and the spin isomers of each neutral and anionic rhodium cluster and infer their magnetic moments. Our results show that octahedral and tetrahedral motifs are favoured in contrast to cubic motifs. Both experimental and theoretical results obtained here are compared and discussed with previous experimental and theoretical studies on the same systems.

Keywords

Ground State Structure Spin Multiplicity Neutral Cluster Electron Binding Energy Ground State Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I.M.L. Billas, A. Chatelain, W.A. de Heer, Science 265, 1682 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Bucher, D.C. Douglass, L.A. Bloomfiled, Phys. Rev. Lett. 66, 3052 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    S.E. Apsel, J.W. Emmert, J. Deng, L.A. Bloomfield, Phys. Rev. Lett. 76, 1441 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    E.K. Parks, S.J. Riley, Z. Phys. D 33, 59 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    E.K. Parks, L. Zhu, J. Ho, S.J. Riley, J. Chem. Phys. 102, 7377 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    E.K. Parks, L. Zhu, J. Ho, S.J. Riley, J. Chem. Phys. 100, 7206 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    O. Sipr, M. Kosuth, H. Ebert, Phys. Rev. B 70, 174423 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M.L. Tiago, Y. Zhou, M.M.G. Alemany, Y. Saad, J.R. Chelikowsky, Phys. Rev. Lett. 97, 147201 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R. Felix-Medina, J. Dorantes-Davila, G.M. Pastor, Phys. Rev. B 67, 094430 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    K.W. Edmonds, C. Binns, S.H. Baker, S.C. Thornton, C. Norris, J.B. Goedkoop, M. Finazzi, N.B. Brookes, Phys. Rev. 60, 472 (1999)ADSGoogle Scholar
  11. 11.
    B.V. Reddy, S.N. Khanna, B.I. Dunlap, Phys. Rev. Lett. 70, 3323 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    B.V. Reddy, S.K. Nayak, S.N. Khanna, B.K. Rao, P. Jena, Phys. Rev. B 59, 5214 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    T. Futschek, M. Marsman, J. Hafner, J. Phys. Condens. Matter 17, 5927 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    D. Majundar, K. Balasubramanian, J. Chem. Phys. 106, 4055 (1997)ADSGoogle Scholar
  15. 15.
    A.J. Cox, J.G. Louderback, L.A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Cox, J.G. Louderback, S.E. Apsel, L.A. Bloomfield, Phys. Rev. B 49, 12295 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Y.-C. Bae, H. Osanai, V. Kumar, Y. Kawazoe, Phys. Rev. B 70, 195413 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Jinlong, F. Toigo, W. Klein, Phys. Rev. B 50, 7915 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Jinlong, X. Chuanyun, X. Shangda, W. Klein, Phys. Rev. B 48, 8253 (1993)CrossRefGoogle Scholar
  20. 20.
    K.K. Das, K. Balasubramanian, J. Chem. Phys. 93, 625 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    D. Dai, K. Balasubramanian, Chem. Phys. Lett. 195, 207 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Nayak, S.E. Weber, P. Jena, K. Wildberger, R. Zeller, P.H. Dederichs, V.S. Stepanyk, W. Hergert, Phys. Rev. B 56, 8849 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    P. Ghosh, R. Pushpa, S. de Gironcoli, S. Narasimhan, J. Chem. Phys. 128, 194708 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Hamilton, W.S. Hopkins, D.J. Harding, T.R. Walsh, P. Gruene, M. Haertelt, A. Fielicke, G. Meijer, S. Mackenzie, J. Am. Chem. Soc. 132, 1448 (2010)CrossRefGoogle Scholar
  25. 25.
    S.M. Hamilton, W.S. Hopkins, D.J. Harding, T.R. Walsh, M. Haertelt, C. Kerpal, P. Gruene, G. Meijer, A. Fielicke, S. Mackenzie, J. Phys. Chem. A 115, 2489 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Fielicke, G. von Helden, G. Meijer, D.B. Pedersen, B. Simard, D.M. Rayner, J. Phys. Chem. B 108, 14591 (2004)CrossRefGoogle Scholar
  27. 27.
    X. Li, A. Grubisic, S.T. Stokes, J. Cordes, G.F. Gantefoer, K.H. Bowen, B. Kiran, M. Willis, P. Jena, R. Burgert, H. Schnoeckel, Science 315, 356 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    H. Wang, Y.J. Ko, L.G. García, P. Sen, M.R. Beltrán, K.H. Bowen, Phys. Chem. Chem. Phys. 13, 7685 (2011)CrossRefGoogle Scholar
  29. 29.
    D.J. Harding, T.R. Walsh, S.M. Hamilton, W.S. Hopkins, S.R. Mackenzie, P. Gruene, M. Haertelt, G. Meijer, A. Fielicke, J. Chem. Phys. 132, 011101 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Harding, P. Gruene, M. Haertelt, G. Meijer, A. Fielicke, S.M. Hamilton, W.S. Hopkins, S.R. Mackenzie, S.P. Neville, T.R. Walsh, J. Chem. Phys. 133, 214304 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    M. Gerhards, O.C. Thomas, J.M. Nilles, W.J. Zheng, K.H. Bowen, J. Chem. Phys. 116, 10247 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    D.G. Leopold, J. Ho, W.C. Lineberger, J. Chem. Phys. 86, 1715 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    J.H. Wood, A.M. Boring, Phys. Rev. B 18, 2701 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  38. 38.
    K.A. Gingerich, D.L. Cocke, J. Chem. Soc. Chem. Commun. 1, 536 (1972)CrossRefGoogle Scholar
  39. 39.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision D.1 (Gaussian, Inc., Wallingford, 2005)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcela R. Beltrán
    • 1
    Email author
  • Fernando Buendía Zamudio
    • 1
  • Vikas Chauhan
    • 2
  • Prasenjit Sen
    • 2
  • Haopeng Wang
    • 3
  • Yeon Jae Ko
    • 3
  • Kit Bowen
    • 3
  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  2. 2.Harish-Chandra Research InstituteAllahabadIndia
  3. 3.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations