Advertisement

Optical absorption in boron clusters B6 and B 6 + : a first principles configuration interaction singles approach

  • Ravindra ShindeEmail author
  • Alok Shukla
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The linear optical absorption spectra in neutral boron cluster B6 and cationic B6 + are calculated using a first principles correlated electron approach. The geometries of several low-lying isomers of these clusters were optimized at the coupled-cluster singles doubles (CCSD) level of theory. With these optimized ground-state geometries, excited states of different isomers were computed using the configuration-interaction singles (CIS) approach. The many-body wavefunctions of various excited states have been analyzed and the nature of optical excitation involved are found to be of collective, plasmonic type. We also benchmark our CIS results against more sophisticated equation-of-motion (EOM) CCSD approach for a few isomers.

Keywords

Excited State Electronic Excitation Optical Absorption Spectrum Peak Number Point Group Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.A. Alonso, Structure and Properties of Atomic Nanostructures (Imperial College Press, London, 2005) Google Scholar
  2. 2.
    Physics and Chemistry of Small Clusters, edited by P. Jena, S. Khanna, B. Rao, (Plenum Publishing, New York, 1987) Google Scholar
  3. 3.
    R.N. Grimes, J. Chem. Educ. 81, 657 (2004) CrossRefGoogle Scholar
  4. 4.
    B. Kiran, S. Bulusu, H.J. Zhai, S. Yoo, X.C. Zeng, L.S. Wang, Proc. Natl. Acad. Sci. USA 102, 961 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    C. Romanescu, T.R. Galeev, W.L. Li, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 50, 9334 (2011) CrossRefGoogle Scholar
  6. 6.
    H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 42, 6004 (2003) CrossRefGoogle Scholar
  7. 7.
    I. Cabria, M.J. López, J.A. Alonso, Nanotechnology 17, 778 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    H.J. Zhai, B. Kiran, J. Li, L.S. Wang, Nat. Mater. 2, 827 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    J. Jimenez-Halla, R. Islas, T. Heine, G. Merino, Angew. Chem. Int. Ed. 49, 5668 (2010) CrossRefGoogle Scholar
  10. 10.
    W. Huang, A.P. Sergeeva, H.J. Zhai, B.B. Averkiev, L.S. Wang, A.I. Boldyrev, Nat. Chem. 2, 202 (2010) CrossRefGoogle Scholar
  11. 11.
    A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, Coord. Chem. Rev. 250, 2811 (2006) CrossRefGoogle Scholar
  12. 12.
    A.N. Alexandrova, H.J. Zhai, L.S. Wang, A.I. Boldyrev, Inorg. Chem. 43, 3552 (2004) CrossRefGoogle Scholar
  13. 13.
    A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, E. Steiner, P.W. Fowler, J. Phys. Chem. A 107, 1359 (2003) CrossRefGoogle Scholar
  14. 14.
    S.J.L. Placa, P.A. Roland, J.J. Wynne, Chem. Phys. Lett. 190, 163 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    L. Hanley, J.L. Whitten, S.L. Anderson, J. Phys. Chem. 92, 5803 (1988) CrossRefGoogle Scholar
  16. 16.
    I. Boustani, Phys. Rev. B 55, 16426 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    M. Atiş, C. Özdogan, Z.B. Güvenç, Int. J. Quantum Chem. 107, 729 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    S. Botti, A. Castro, N.N. Lathiotakis, X. Andrade, M.A.L. Marques, Phys. Chem. Chem. Phys. 11, 4523 (2009) CrossRefGoogle Scholar
  19. 19.
    R. Shinde, A. Shukla, Nano LIFE 2, 1240004 (2012) CrossRefGoogle Scholar
  20. 20.
    A. Dreuw, M. Head-Gordon, Chem. Rev. 105, 4009 (2005) CrossRefGoogle Scholar
  21. 21.
    S. Tirapattur, M. Bellette, M. Leclerc, G. Durocher, J. Mol. Struct. Theor. 625, 141 (2003) CrossRefGoogle Scholar
  22. 22.
    J.B. Lagowski, J. Mol. Struct. Theor. 589-590, 125 (2002) CrossRefGoogle Scholar
  23. 23.
    T.A. Dahlseid, M.M. Kappes, J.A. Pople, M.A. Ratner, J. Chem. Phys. 96, 4924 (1992) ADSCrossRefGoogle Scholar
  24. 24.
    J. Cornil, D. Beljonne, R. Friend, J. Brédas, Chem. Phys. Lett. 223, 82 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    L. Mitas, J. Therrien, R. Twesten, G. Belomoin, M.H. Nayfeh, Appl. Phys. Lett. 78, 1918 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    K. Harigaya, S. Abe, Phys. Rev. B 49, 16746 (1994) ADSCrossRefGoogle Scholar
  27. 27.
    V. Bonačić-Koutecký, J. Gaus, M.F. Guest, J. Koutecký, J. Chem. Phys. 96, 4934 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    I. Shavitt, R. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, London, 2009) Google Scholar
  29. 29.
    M.J. Frisch et al., Gaussian 09 Revision A.02 (Gaussian Inc., Wallingford CT, 2009) Google Scholar
  30. 30.
    M. Kallay, J. Gauss, J. Chem. Phys. 121, 9257 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    A.I. Krylov, Ann. Rev. Phys. Chem. 59, 433 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    A. Allouche, J. Comput. Chem. 32, 174 (2011) CrossRefGoogle Scholar
  33. 33.
    G. Wei, Z. Pu, R. Zou, G. Li, Q. Luo, Sci. China Chem. 53, 202 (2010) CrossRefGoogle Scholar
  34. 34.
    V. Bonačić-Koutecký, P. Fantucci, J. Koutecký, Chem. Rev. 91, 1035 (1991) CrossRefGoogle Scholar
  35. 35.
    J. Blanc, V.B. Koutecký, M. Broyer, J. Chevaleyre, P. Dugourd, J. Koutecký, C. Scheuch, J.P. Wolf, L. Wöste, J. Chem. Phys. 96, 1793 (1992) ADSCrossRefGoogle Scholar
  36. 36.
    J. Ma, Z. Li, K. Fan, M. Zhou, Chem. Phys. Lett. 372, 708 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    R. Shinde, A. Shukla, in preparation Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations