Advertisement

Structures and properties of AunScm (n + m = 6) clusters

  • Gui-Xian Ge
  • Hong-Xia Yan
  • Qun Jing
  • Xiao-Ming Huang
  • Jian-Guo WanEmail author
  • Guang-Hou Wang
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The geometries, stabilities, electronic and magnetic properties of Au n Sc m    (n + m = 6) clusters have been systematically investigated using density functional theory. The lowest energy structures of Au n Sc m clusters are mostly 3D structures, and the bonding strength is arranged in the order of Au-Sc  >  Sc-Sc  >  Au-Au. The calculated electronic properties reveal that the reactive activity of Au n Sc m clusters towards small molecules is higher than that of pure gold cluster. Au4Sc2 cluster may be a fairly good catalyst with higher stability and smaller HOMO-LUMO gap. Mulliken population analysis and electron deformation density show that ionic bond and covalent bond exist in the Au n Sc m clusters. The total magnetic moments of Au n Sc m clusters vary with the composition ratio of Sc to Au. At m ≤ 3, the total magnetic moments of Au n Sc m clusters are quenched, which is correlated with the charge transfer and hybridization between Au and Sc.

Keywords

Gold Cluster Total Magnetic Moment Local Magnetic Moment Lower Energy Structure Average Bond Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Yasuda, H. Mori, Phys. Rev. Lett. 69, 3747 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    B. Pauwels, G. van Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. Theil-Kuhn, W. Bouwen, P. Lievens, Phys. Rev. B 63, 165406 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    T. Shibata, B.A. Bunker, Z. Zhang, B. Meisel, C.F. Vardeman II, J.D. Gezelter, J. Am. Chem. Soc. 124, 11989 (2002)CrossRefGoogle Scholar
  4. 4.
    H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara, H. Kobayashi, J. Phys. Chem. B 106, 8714 (2002)CrossRefGoogle Scholar
  5. 5.
    L.Y. Cao, L.M. Tong, P. Diao, T. Zhu, Z.F. Liu, Chem. Mater. 16, 3239 (2004)CrossRefGoogle Scholar
  6. 6.
    H.P. Mao, H.Y. Wang, Z.H. Zhu, Y.J. Tang, Acta Phys. Sin. 55, 4542 (2006)Google Scholar
  7. 7.
    H.Y. Wang, X.H. Shen, Z.Y. Wang, Z.H. Zhu, Acta Phys. Sin. 54, 3565 (2005)Google Scholar
  8. 8.
    S. Chrétien, S.K. Buratto, H. Metiu, Curr. Opin. Solid State Mater. Sci. 11, 62 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    K. Koszinowski, D. Schröder, H. Schwarz, Chem. Phys. Chem. 4, 1233 (2003)CrossRefGoogle Scholar
  10. 10.
    H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem. Int. Ed. 42, 1297 (2003)CrossRefGoogle Scholar
  11. 11.
    D.M. Popolan, M. Ner, R. Mitric, T.M. Bernhardt, V.B. Koutecký, Phys. Chem. Chem. Phys. 12, 7865 (2010)CrossRefGoogle Scholar
  12. 12.
    D.W. Yuan, Y. Wang, Z. Zeng, J. Chem. Phys. 122, 114310 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Zhang, L.M. He, L.X. Zhao, X.J. Feng, Y.H. Luo, J. Phys. Chem. C 113, 21014 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M.B. Torres, Phys. Rev. B 71, 155412 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    B. Delley, J. Chem. Phys. 92, 508 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    X. Gu, M. Ji, S.H. Wei, X.G. Gong, Phys. Rev. B 70, 205401 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    R.S. Mulliken, J. Chem. Phys. 23, 1841 (1955)ADSCrossRefGoogle Scholar
  23. 23.
    D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    L.W. Sai, L.L. Tang, J.J. Zhao, J. Wang, V. Kumar, J. Chem. Phys. 135, 184305 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R.C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Cleveland, 1974)Google Scholar
  26. 26.
    J. Babiskin, J.R. Anderson, in American Institute of Physics Handbook (McGraw-Hill, New York, 1972)Google Scholar
  27. 27.
    M. Moskovits, D.P. DiLella, W.J. Limm, J. Chem. Phys. 80, 626 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    K.A. Gingerich, Faraday Symp. Chem. Soc. 14, 109 (1980)CrossRefGoogle Scholar
  29. 29.
    Z.J. Wu, Chem. Phys. Lett. 406, 24 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    A. Deka, R.C. Deka, J. Mol. Struct. Theochem 870, 83 (2008)CrossRefGoogle Scholar
  31. 31.
    G.F. Wu, J.L. Wang, Y.M. Lu, M.L. Yang, J. Chem. Phys. 128, 224315 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    J.L. Wang, G.H. Wang, J.J. Zhao, Phys. Rev. B 66, 035418 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    D. Die, X.Y. Kuang, J.J. Guo, B.X. Zheng, J. Mol. Struct. Theochem 902, 54 (2009)CrossRefGoogle Scholar
  36. 36.
    E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, Phys. Rev. B 69, 085402 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    G.F. Zhao, Z. Zeng, J. Chem. Phys. 125, 014303 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Okumura, Y. Kitagawa, M. Haruta, K. Yamaguchi, Appl. Catal. A: Gen. 291, 37 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gui-Xian Ge
    • 1
    • 2
  • Hong-Xia Yan
    • 2
  • Qun Jing
    • 2
  • Xiao-Ming Huang
    • 3
  • Jian-Guo Wan
    • 1
    Email author
  • Guang-Hou Wang
    • 1
  1. 1.National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing UniversityNanjingP.R. China
  2. 2.Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi UniversityXinjiangP.R. China
  3. 3.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of TechnologyDalianP.R. China

Personalised recommendations