Systemically tuning the surface plasmon resonance of high-density silver nanoparticle films

  • Yanchun Gong
  • Yang Zhou
  • Longbin He
  • Bo Xie
  • Fengqi Song
  • Min HanEmail author
  • Guanghou Wang
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters


A systemical modulation on the frequency of the surface plasmon resonance (SPR) band of high density silver nanoparticle arrays is demonstrated by depositing gas phase silver clusters on substrate surface with a controlled particle coverage under in-situ SPR spectra monitoring. With increasing the density of the Ag nanoparticles, the SPR wavelength shows a redshift from less than 400 nm to more than 570 nm. The tuning of the SPR wavelength is found to correlate to the increase of the fraction of closely spaced nanoparticle pairs that are near-field coupled with the deposition mass. The coverage dependent SPR properties are also compared with the results from discrete dipole approximation (DDA) calculations.


Silver Nanoparticle Surface Plasmon Resonance Surface Enhance Raman Scatter Interparticle Spacing Surface Plasmon Resonance Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    S.S. Acimovic, M.P. Kreuzer, M.U. Gonzalez, R. Quidant, ACS Nano 3, 1231 (2009)CrossRefGoogle Scholar
  4. 4.
    Y. Fang, N. Seong, D.D. Dlott, Science 321, 388 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kwon, J. Kim, B. Kim, I. Park, C. Cho, C.C. Byeon, S. Park, Adv. Mater. 20, 1253 (2008)CrossRefGoogle Scholar
  6. 6.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 688 (2003)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, C. Jiang, F. Ren, Q. Wang, D. Chen, D. Fu, J. Mater. Sci. 42, 7294 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)CrossRefGoogle Scholar
  9. 9.
    J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 6755 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Chem. Phys. Lett. 288, 243 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    C. Noguez, J. Phys. Chem. C 111, 3806 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Pinchuk, A. Hilger, G. Pleseen, U. Kreibig, Nanotechnology 15, 1890 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M. Meier, A. Wokaun, P.F. Liao, J. Opt. Soc. Am. B 2, 931 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    L.A. Sweatlock, S.A. Maier, H.A. Atwater, J.J. Penninkhof, A. Polman, Phys. Rev. B 71, 235408 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, C. Girard, Phys. Rev. Lett. 82, 2590 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg, Opt. Commun. 220, 137 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    S.S. Açimoviç, M.P. Kreuzer, M.U. González, R. Quidant, ACS Nano 3, 1231 (2009)CrossRefGoogle Scholar
  18. 18.
    K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 1087 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    B.M. Reinhard, M. Siu, H. Agarwal, A.P. Alivisatos, J. Liphardt, Nano Lett. 5, 2246 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    T. Atay, J.H. Song, A.V. Nurmikko, Nano Lett. 4, 1627 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Lu, G.L. Liu, L.P. Lee, Nano Lett. 5, 5 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008)CrossRefGoogle Scholar
  23. 23.
    K.R. Catchpole, A. Polman, Opt. Express 16, 21793 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, Y. Thurner, J. Vac. Sci. Technol. A 12, 2925 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    M. Han, C. Xu, D. Zhu, L. Yang, J. Zhang, Y. Chen, K. Ding, F. Song, G. Wang, Adv. Mater. 19, 2979 (2007)CrossRefGoogle Scholar
  26. 26.
    J.B. Chen, J.F. Zhou, A. Häfele, C.R. Yin, W. Kronmüller, M. Han, H. Haberland, Eur. Phys. J. D 34, 251 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    E.H. Purcell, C.R. Pennypacker, Astrophys. J. 186, 705 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    B.T. Draine, P.J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 (2012),
  30. 30.
    H.J. Hagemann, W. Gudat, C. Kunz, J. Opt. Soc. Am. 65, 742 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    P. Mulvaney, in Nanoscale Materials in Chemistry, edited by K.J. Klabunde (John Wiley & Sons, Inc., New York, 2001)Google Scholar
  32. 32.
    L.B. He, X. Chen, Y.W. Mu, F.Q. Song, M. Han, Nanotechnology 21, 495601 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    I. Romero, J. Aizpurua, G.W. Bryant, F.J.G. Abajo, Opt. Express 14, 9988 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C.V. Haesendonck, S.P. Ringer, M. Han, Z. Liu, G. Wang, Small 6, 446 (2010)CrossRefGoogle Scholar
  35. 35.
    J. Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B 107, 9964 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yanchun Gong
    • 1
    • 2
  • Yang Zhou
    • 2
  • Longbin He
    • 2
  • Bo Xie
    • 2
  • Fengqi Song
    • 2
  • Min Han
    • 2
    Email author
  • Guanghou Wang
    • 2
  1. 1.Institute of Sciences, PLA University of Science and TechnologyNanjingP.R. China
  2. 2.National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing UniversityNanjingP.R. China

Personalised recommendations