Carbon clusters near the step of Rh surface: implication for the initial stage of graphene nucleation

Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

To understand the initial nucleation of graphene by chemical vapor deposition along metal step, carbon clusters (N = 1 ∼ 24) near Rh (4 3 3) stepwise surface were systemically explored by first-principles calculations. Carbon chains are always more stable than carbon rings on stepped metal surface. Starting from C6, carbon chains prefer two-end passivation on the metal step. A structural transition of carbon clusters from one-dimensional sp chains to two-dimensional sp2 networks are found at C10, which corresponds to the nucleation size at a wide range of chemical potentials. According to these theoretical results, we proposed that appropriately controlling the chemical potential may be helpful for observing the four stable carbon clusters along metal step and improving the quality of graphene.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Geim, Science 324, 1530 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007) CrossRefGoogle Scholar
  10. 10.
    N. Mingo, D.A. Broido, Phys. Rev. Lett. 95, 096105 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    G. Fiori, G. Iannaccone, IEEE Electron Device Lett. 28, 760 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Nat. Nanotechnol. 3, 397 (2008)CrossRefGoogle Scholar
  18. 18.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    H. Gao, L. Wang, J. Zhao, F. Ding, J. Lu, J. Phys. Chem. C 115, 3236 (2011) CrossRefGoogle Scholar
  20. 20.
    H. Chang, J. Cheng, X. Liu, J. Gao, M. Li, J. Li, X. Tao, F. Ding, Z. Zheng, Chem. Eur. J. 17, 8896 (2011) CrossRefGoogle Scholar
  21. 21.
    Y. Okamoto, Y. Miyamoto, J. Phys. Chem. B 105, 3470 (2001) CrossRefGoogle Scholar
  22. 22.
    T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Nano Lett. 8, 173 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, Nature 467, 305 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, Nature 472, 74 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Chen, Y. Xu, K. Zhao, X. Wan, J. Deng, W. Yan, Nano Res. 3, 714 (2010)CrossRefGoogle Scholar
  27. 27.
    X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 22, 734 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu, K.P. Loh, Nat. Nanotechnol. 6, 247 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Nano Lett. 12, 2294 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Ri Lei, H. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Sci. Rep. 2, 247 (2012)CrossRefGoogle Scholar
  38. 38.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    K.S. Subrahmanyam, P. Kumar, U. Maitra, A. Govindaraj, K.P.S.S. Hembram, U.V. Waghmare, C.N.R. Rao, Proc. Natl. Acad. Sci. 108, 2674 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Chem. Commun. 47, 2432 (2011) CrossRefGoogle Scholar
  41. 41.
    D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    P. Sutter, Nat. Mater. 8, 171 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)CrossRefGoogle Scholar
  45. 45.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    E.N. Voloshina, Y.S. Dedkov, S. Torbrugge, A. Thissen, M. Fonin, Appl. Phys. Lett. 100, 241606 (2012) ADSCrossRefGoogle Scholar
  49. 49.
    G.C. Dong, D.W.V. Baarle, M.J. Rost, J.W.M. Frenken, New J. Phys. 14, 053033 (2012) ADSCrossRefGoogle Scholar
  50. 50.
    B. Wang, M. Caffio, C. Bromley, H. Früchtl, R. Schaub, ACS Nano 4, 5773 (2010)CrossRefGoogle Scholar
  51. 51.
    L. Elena, C.B. Norman, J.F. Peter, F.M. Kevin, New J. Phys. 10, 093026 (2008) CrossRefGoogle Scholar
  52. 52.
    D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, Y. Liu, Proc. Natl. Acad. Sci. 109, 7992 (2012) ADSCrossRefGoogle Scholar
  53. 53.
    B. Wang, X. Ma, M. Caffio, R. Schaub, W.-X. Li, Nano Lett. 11, 424 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Cui, Q. Fu, H. Zhang, X. Bao, Chem. Commun. 47, 1470 (2011) CrossRefGoogle Scholar
  55. 55.
    F. Ding, K. Bolton, A. Rosén, J. Phys. Chem. B 108, 17369 (2004) CrossRefGoogle Scholar
  56. 56.
    A. Gorbunov, O. Jost, W. Pompe, A. Graff, Carbon 40, 113 (2002)CrossRefGoogle Scholar
  57. 57.
    A.B. Preobrajenski, M.L. Ng, A.S. Vinogradov, N. Mårtensson, Phys. Rev. B 78, 073401 (2008) ADSCrossRefGoogle Scholar
  58. 58.
    P.W. Sutter, J.-I. Flege, E.A. Sutter, Nat. Mater. 7, 406 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    E. Loginova, N.C. Bartelt, P.J. Feibelman, K.F. McCarty, New J. Phys. 11, 063046 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    E. Cockayne, G.M. Rutter, N.P. Guisinger, J.N. Crain, P.N. First, J.A. Stroscio, Phys. Rev. B 83, 195425 (2011) ADSCrossRefGoogle Scholar
  61. 61.
    E. Starodub, S. Maier, I. Stass, N.C. Bartelt, P.J. Feibelman, M. Salmeron, K.F. McCarty, Phys. Rev. B 80, 235422 (2009) ADSCrossRefGoogle Scholar
  62. 62.
    H. Zhang, Q. Fu, Y. Cui, D. Tan, X. Bao, J. Phys. Chem. C 113, 8296 (2009) CrossRefGoogle Scholar
  63. 63.
    P. Lacovig, M. Pozzo, D. Alfè, P. Vilmercati, A. Baraldi, S. Lizzit, Phys. Rev. Lett. 103, 166101 (2009) ADSCrossRefGoogle Scholar
  64. 64.
    J. Gao, J. Yip, J. Zhao, B.I. Yakobson, F. Ding, J. Am. Chem. Soc. 133, 5009 (2011) CrossRefGoogle Scholar
  65. 65.
    J. Gao, Q. Yuan, H. Hu, J. Zhao, F. Ding, J. Phys. Chem. C 115, 17695 (2011) CrossRefGoogle Scholar
  66. 66.
    R.G.V. Wesep, H. Chen, W. Zhu, Z. Zhang, J. Chem. Phys. 134, 171105 (2011) ADSCrossRefGoogle Scholar
  67. 67.
    D. Cheng, G. Barcaro, J.-C. Charlier, M. Hou, A. Fortunelli, J. Phys. Chem. C 115, 10537 (2011) CrossRefGoogle Scholar
  68. 68.
    Q. Yuan, J. Gao, H. Shu, J. Zhao, X. Chen, F. Ding, J. Am. Chem. Soc. 134, 2970 (2011) CrossRefGoogle Scholar
  69. 69.
    W. Zhang, P. Wu, Z. Li, J. Yang, J. Phys. Chem. C 115, 17782 (2011) CrossRefGoogle Scholar
  70. 70.
    L. Meng, Q. Sun, J. Wang, F. Ding, J. Phys. Chem. C 116, 6097 (2012) CrossRefGoogle Scholar
  71. 71.
    H. Chen, W. Zhu, Z. Zhang, Phys. Rev. Lett. 104, 186101 (2010) ADSCrossRefGoogle Scholar
  72. 72.
    S. Saadi, F. Abild-Pedersen, S. Helveg, J. Sehested, B. Hinnemann, C.C. Appel, J.K. Nørskov, J. Phys. Chem. C 114, 11221 (2010) CrossRefGoogle Scholar
  73. 73.
    P. Wu, H. Jiang, W. Zhang, Z. Li, Z. Hou, J. Yang, J. Am. Chem. Soc. 134, 6045 (2012) CrossRefGoogle Scholar
  74. 74.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  75. 75.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  76. 76.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  77. 77.
    R.O. Jones, J. Chem. Phys. 110, 5189 (1999) ADSCrossRefGoogle Scholar
  78. 78.
    D. Tománek, M.A. Schluter, Phys. Rev. Lett. 67, 2331 (1991) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianP.R. China

Personalised recommendations