Advertisement

Modelling of discharge in a high-flow microwave plasma source (MPS)

  • Helena NowakowskaEmail author
  • Mariusz Jasiński
  • Jerzy Mizeraczyk
Regular Article

Abstract

Self-consistent numerical calculations are performed on a microwave sustained discharge in argon at atmospheric pressure. Very high gas flow rates (typically 120 L/min) are considered. Furthermore, in a discharge tube with a diameter of 26 mm i.d., which is at least twice as large as those currently utilized at 2.45 GHz, according to our calculations, the device nonetheless ensures good impedance matching, as required for an efficient gas processing. Output values of the calculations in the 1 to 6 kW power range are the radial and axial distributions of gas and electron temperature as well as electron density. The specific features that are observed are the fact that: (i) the discharge is not filamentary although the large diameter of the discharge tube favours such a phenomenon when using such a high field frequency and lower gas flow rates; (ii) the occurrence of a minimum value (a hole) of gas temperature and electron density on the tube axis, with the swirling of the gas flow being suggested to improve the uniformity of the discharge parameters, hence the efficiency of a given process.

Keywords

Plasma Physics 

References

  1. 1.
    C.M. Ferreira, B. Gordiets, E. Tatarova, J. Henriques, F.M. Dias, Chem. Phys. 398, 248 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    V. Straňák, M. Tichý, P. Špatenka, J. Koller, V. Kıřha, V. Scholtz, Czech. J. Phys. 56, B843 (2006)CrossRefGoogle Scholar
  3. 3.
    T. Shimizu, B. Steffes, R. Pompl, F. Jamitzky, W. Bunk, K. Ramrath, M. Georgi, W. Stolz, H.-U. Schmidt, T. Urayama, S. Fujii, G.E. Morfill, Plasma Process. Polym. 5, 577 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Uhm, Y. Hong, D. Shin, Plasma Sources Sci. Technol. 15, S26 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kopecki, D. Kiesler, M. Leins, A. Schulz, M. Walker, M. Kaiser, H. Muegge, U. Stroth, Surf. Coat. Technol. 205, S342 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Kabouzi, M. Moisan, J. Rostaing, C. Trassy, D. Keroack, Z. Zakrzewski, J. Phys. D 93, 9483 (2003)Google Scholar
  7. 7.
    Y.C. Hong, H.S. Uhm, Phys. Plasmas 10, 3410 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    J. Henriques, N. Bundaleska, E. Tatarova, F.M. Dias, C.M. Ferreira, Int. J. Hydrogen Energy 36, 345 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Jasiński, M. Dors, H. Nowakowska, G.V. Nichipor, J. Mizeraczyk, J. Phys. D 44, 194002 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Kabouzi, M. Moisan, IEEE Trans. Plasma Sci. 33, 292 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J. Muñoz, J. Bravo, M. Calzada, Open Spectrosc. J. 3, 52 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Moisan, G. Sauve, Z. Zakrzewski, J. Hubert, Plasma Sources Sci. Technol. 3, 584 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    M. Moisan, Z. Zakrzewski, Plasma Sources Sci. Technol. 4, 379 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    H. Nowakowska, M. Jasiński, P. Dębicki, J. Mizeraczyk, IEEE Trans. Plasma Sci. 39, 1935 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    H. Nowakowska, M. Jasiński, J. Mizeraczyk, IEEE Trans. Plasma Sci. 39, 2906 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Nowakowska, M. Jasiński, J. Mizeraczyk, Eur. J. Phys. 54, 511 (2009)ADSGoogle Scholar
  17. 17.
    H. Nowakowska, Z. Zakrzewski, M. Moisan, M. Lubański, J. Phys. D 31, 1422 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    E. Castaños-Martínez, Y. Kabouzi, K. Makasheva, M. Moisan, Phys. Rev. E 70, 066405 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kabouzi, D. Graves, E. Castaños-Martínez, M. Moisan, Phys. Rev. E 75, 016402 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    V. Liau, M. Fang, J. Yan, A. Al-Shamma’a, J. Phys. D 36, 2774 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    G. Hagelaar, L. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Mitchner, C.H. Kruger, Partially Ionized Gases (Wiley, New York, 1973)Google Scholar
  23. 23.
    M. Lieberman, A. Lichtenberg, Principles of plasma discharges and material processing (Wiley, New York, 1994)Google Scholar
  24. 24.
    G. Kroesen, D. Schram, C. Timmermans, M. De Haas, IEEE Trans. Plasma. Sci. 18, 85 (1990)CrossRefGoogle Scholar
  25. 25.
    R.S. Devoto, Phys. Fluids 10, 354 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    G.M. Janssen, J. van Dijk, D.A. Benoy, M.A. Tas, K.T.A.L. Burm, W.J. Goedheer, J.A.M. van der Mullen, D.C. Schram, Plasma Sources Sci. Technol. 8, 1 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    D. Benoy, J. van der Mullen, D. Schram, J. Quant. Spectrosc. Radiat. Transfer 46, 195 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    W. Chen, J. Heberlein, E. Pfender, Plasma Chem. Plasma Proc. 16, 635 (1996)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    T.S. Petrova, E. Benova, G. Petrov, I. Zhelyazkov, Phys. Rev. E 60, 875 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    H. Schlüter, A. Shivarova, Phys. Rep. 443, 121 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Palomares, E. Iordanova, E.M. van Veldhuizen, L. Baede, A. Gamero, A. Solab, J.J.A.M. van der Mullen, Spectrochim. Acta B 65, 225 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. Nantel-Valiquette, Y. Kabouzi, E. Castaños-Martínez, K. Makasheva, M. Moisan, J.C. Rostaing, Pure Appl. Chem. 78, 1173 (2006)CrossRefGoogle Scholar
  34. 34.
    B. Hrycak, D. Czylkowski, M. Jasiński, J. Mizeraczyk, Przeglad Elektrotechniczny (Electrical Review) 88, 310 (2012)Google Scholar
  35. 35.
    B. Hrycak, M. Jasiński, private communicationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Helena Nowakowska
    • 1
    Email author
  • Mariusz Jasiński
    • 1
  • Jerzy Mizeraczyk
    • 1
    • 2
  1. 1.Centre for Plasma and Laser Engineering, Institute of Fluid-Flow MachineryPolish Academy of SciencesGdańskPoland
  2. 2.Department of Marine ElectronicsGdynia Maritime UniversityGdyniaPoland

Personalised recommendations