Advertisement

Global and local structure of liquid Lennard-Jones clusters near freezing

  • Wieslaw PolakEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Liquid Lennard-Jones clusters with magic number of atoms N = 55, 147, 309, 561 and 923 were cooled down in Monte Carlo simulations until freezing. Structural properties of the clusters, including the radial dependence of atomic concentration/density and the local regular structure in arrangement of atoms, just before freezing were analysed. Existence of spherical layers in atomic density around the centre of mass of liquid LJ clusters was confirmed. Formation of layers is explained by central net forces acting on every cluster atom and leading to positioning an atom close to the cluster centre of mass. The strong layering in small clusters of N = 55 and 147 affects atomic diffusion in radial and tangential directions inside the cluster, leading to easier movement of atoms on the layer surface. Analysis of radial profiles of four types of structural units detected in liquid clusters reveals that icosahedral units are the most numerous and are located mainly near cluster surface of all clusters and also in the centre of small clusters.

Keywords

Cluster Centre Central Atom Cluster Atom Mean Square Displacement Radial Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.-F. de Feraudy, G. Torchet, J. Cryst. Growth 217, 449 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    S.I. Kovalenko, D.D. Solnyshkin, E.T. Verkhovtseva, V.V. Eremenko, Chem. Phys. Lett. 250, 309 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S. Valkealahti, M. Manninen, J. Phys.: Condens. Matter 9, 4041 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    T. Ikeshoji, G. Torchet, M.-F. de Feraudy, K. Koga, Phys. Rev. E 63, 031101 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    K. Manninen, J. Akola, M. Manninen, Phys. Rev. B 68, 235412 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    W. Polak, Phys. Rev. E 77, 031404 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D. Romero, C. Barrón, S. Gómez, Comput. Phys. Commun. 123, 87 (1999)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    W. Branz, N. Malinowski, A. Enders, T.P. Martin, Phys. Rev. B 66, 094107 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Chushak, L.S. Bartell, Eur. Phys. J. D 16, 43 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    H.-S. Nam, N.M. Hwang, B.D. Yu, J.-K. Yoon, Phys. Rev. Lett. 89, 275502 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    F. Baletto, C. Mottet, R. Ferrando, Chem. Phys. Lett. 354, 82 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    L. Zhang, S.N. Xu, C.B. Zhang, Y. Qi, Comput. Mater. Sci. 47, 162 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, H. Sun, Solid State Commun. 149, 1722 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S.N. Xu, L. Zhang, Y. Qi, C.B. Zhang, Physica B 405, 632 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S.L. Gafner, L.V. Redel, Y.Y. Gafner, J. Exp. Theor. Phys. 108, 784 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S.L. Gafner, L.V. Redel, Y.Y. Gafner, Phys. Met. Metallogr. 104, 180 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    S. Schnabel, T. Vogel, M. Bachmann, W. Janke, Chem. Phys. Lett. 476, 201 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.K. Lee, J.A. Barker, F.F. Abraham, J. Chem. Phys. 58, 3166 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    L.J. Lewis, P. Jensen, J.-L. Barrat, Phys. Rev. B 56, 2248 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    B.G. Moore, A.A. Al-Quraishi, Chem. Phys. 252, 337 (2000)CrossRefGoogle Scholar
  21. 21.
    S.H. Lee, R. Kapral, Physica A 298, 56 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    W. Polak, Eur. Phys. J. D 40, 231 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    C. Hock, C. Bartels, S. Straßburg, M. Schmidt, H. Haberland, B. von Issendorff, A. Aguado, Phys. Rev. Lett. 102, 043401 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Aguado, M.F. Jarrold, Annu. Rev. Phys. Chem. 62, 151 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R.S. Berry, J. Phys. Chem. 98, 6910 (1994)CrossRefGoogle Scholar
  26. 26.
    W. Polak, A. Patrykiejew, Phys. Rev. B 67, 115402 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    W. Polak, Cryst. Res. Technol. 42, 1207 (2007)CrossRefGoogle Scholar
  28. 28.
    D. Schebarchov, S.C. Hendy, W. Polak, J. Phys.: Condens. Matter 21, 144204 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    T. Durakiewicz, S. Halas, Chem. Phys. Lett. 341, 195 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    S. Halas, private communicationGoogle Scholar
  31. 31.
    A. Aguado, private communicationGoogle Scholar
  32. 32.
    M. Godonoga, A. Malins, J. Eggers, C.P. Royall, Mol. Phys. 109, 1393 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    U. Tartaglino, T. Zykova-Timan, F. Ercolessi, E. Tosatti, Phys. Rep. 411, 291 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    V.V. Hoang, Physica B 405, 1908 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Applied PhysicsLublin University of TechnologyLublinPoland

Personalised recommendations