Reexamining Larmor precession in a spin-rotator: testable correction and its ramifications

  • Dipankar Home
  • Alok Kumar PanEmail author
  • Arka BanerjeeEmail author
Regular Article


For a spin-polarized plane wave passing through a spin-rotator containing uniform magnetic field, we provide a detailed analysis for solving the appropriate Schrödinger equation. A modified expression for spin precession is obtained which reduces to the standard Larmor precession relation when kinetic energy is very large compared to the spin-magnetic field interaction. We show that there are experimentally verifiable regimes of departure from the standard Larmor precession formula. The treatment is then extended to the case of a spin-polarized wave packet passing through a uniform magnetic field. The results based on the standard expression for Larmor precession and that obtained from the modified formula are compared in various regimes of the experimental parameters.


Atomic Physics 


  1. 1.
    F. Mezei, Z. Phys. 255, 146 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    A. Zeilinger, C.G. Shull, Phys. Rev. B 19, 3957 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    Neutron Spin Echo, edited by F. Mezei (Springer, Berlin, 1980), Vol. 128Google Scholar
  4. 4.
    B. Alefeld, G. Badurek, H. Rauch, Phys. Lett. A 83, 32 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    A.P. Heberle, W.W. Rühle, K. Ploog, Phys. Rev. Lett. 72, 3887 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Otake, C.M.E. Zeyen, M. Forte, J. Neutron Res. 4, 215 (1996)CrossRefGoogle Scholar
  7. 7.
    M. Hino et al., Phys. Rev. A 59, 2261 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    M.T. Rekveldt, T. Keller, R. Golub, Europhys. Lett. 54, 342 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    N. Martina et al., Phys. B: Condens. Matter 406, 2333 (2011) and references thereinADSCrossRefGoogle Scholar
  10. 10.
    A.I. Baz, Sov. J. Nucl. Phys. 4, 182 (1967)Google Scholar
  11. 11.
    A.I. Baz, Sov. J. Nucl. Phys. 5, 161 (1967)Google Scholar
  12. 12.
    V.F. Rybachenko, Sov. J. Nucl. Phys. 54, 635 (1967)Google Scholar
  13. 13.
    M. Buttiker, R. Landauer, Phys. Rev. Lett. 49, 1739 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    M. Buttiker, Phys. Rev. B 27, 6178 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Falck, E.H. Hauge, Phys. Rev. B 38, 3287 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics – Nonrelativistic Theory (Pergamon Press, Oxford, 1965), p. 57Google Scholar
  17. 17.
    J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, 1985), pp. 76–78Google Scholar
  18. 18.
    E. Merzbacher, Quantum Mechanics (John Wiley & Sons, New York, 1961), pp. 26–27Google Scholar
  19. 19.
    C. Cohen-Tanoudji, B. Diu, F. Laloe, Quantum Mechanics (Wiley, London, 1977), p. 403Google Scholar
  20. 20.
    D. Bohm, Quantum Theory (Prentice-Hall, New York, 1951), p. 443Google Scholar
  21. 21.
    W. Greiner, Quantum Mechanics (Springer, Berlin, 2001)Google Scholar
  22. 22.
    D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Upper Saddle River, 2004)Google Scholar
  23. 23.
    A.K. Pan, M.M. Ali, D. Home, Phys. Lett. A 352, 296 (2006)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Time in Quantum Mechanics, edited by J.G. Muga, R. Sala Mayato, I.L. Egusquiza (Springer-Verlag, Berlin, 2002)Google Scholar
  26. 26.
    H. Salecker, E.P. Wigner, Phys. Rev. 109, 571 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Peres, Am. J. Phys. 48, 552 (1980)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    P.C.W. Davies, Class. Quantum Grav. 21, 2761 (2004)ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, H. Rauch, Nature 425, 45 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, H. Rauch, J. Opt. B: Quantum Semicl. Opt. 6, S7 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    S. Basu, S. Bandyopadhyay, G. Kar, D. Home, Phys. Lett. A 279, 281 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CAPSS, Department of Physics, Bose InstituteKolkataIndia
  2. 2.LPTM (CNRS Unité 8089), Université de Cergy-PontoiseCergy-Pontoise CedexFrance
  3. 3.Graduate School of Information Science, Nagoya UniversityNagoyaJapan
  4. 4.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations