Is gold actor or spectator in the reaction of small AunPd m + clusters with O2?

  • Sandra M. Lang
  • Anja Frank
  • Irene Fleischer
  • Thorsten M. BernhardtEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters


The reactivity of free binary gold-palladium clusters (AuPd\hbox{$_2^+$}+2, Au2Pd+, Au2Pd\hbox{$_2^+$}+2, and Au2Pd\hbox{$_3^+$}+3) toward molecular oxygen was investigated in an ion trap experiment under multi-collision conditions and compared to the reactivities of bare Au\hbox{$_n^+$}+n and Pd\hbox{$_m^+$}+m (n, m = 2 − 5) clusters. Reaction kinetics measurements revealed that the reaction rate is mainly determined by the number of palladium atoms in the clusters and only weakly influenced by additional gold atoms. The same holds true for the observed reaction product distributions. Most interestingly, the most reactive cluster ions Pd\hbox{$_3^+$}+3, Au2Pd\hbox{$_3^+$}+3, and Pd\hbox{$_5^+$}+5 exhibit a strong preference to form tetroxide products, Au n Pd m O\hbox{$_4^+$}+4. In addition, employing temperature dependent mass spectrometry, a second adsorption species consisting of several weakly bound oxygen molecules was identified for all investigated palladium containing clusters which is, however, only formed at cryogenic temperatures. All these observations suggest that the gold atoms largely act upon a spectator role in the reaction of the binary clusters. Nevertheless, a rough estimation of the relative O2 binding energies via statistical rate theory indicates that the addition of gold to the Pd\hbox{$_n^+$}+n clusters decreases the O2-cluster interaction strength, although the reaction rate stays constant. This effect in the binary clusters may be of importance to a potential activation and dissociation of the adsorbed O2 molecules.


Gold Atom Palladium Atom Binary Cluster Integrate Rate Equation Statistical Rate Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Hutchings, Faraday Discuss. 152, 9 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Chen, D. Kumar, C.-W. Yi, D.W. Goodman, Science 310, 291 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Science 311, 362 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    K. Koszinowski, D. Schröder, H. Schwarz, Chem. Phys. Chem. 4, 1233 (2003)CrossRefGoogle Scholar
  6. 6.
    S.M. Lang, T.M. Bernhardt, Phys. Chem. Chem. Phys. 14, 9255 (2012)CrossRefGoogle Scholar
  7. 7.
    A.W. Castleman Jr., Catal. Lett. 141, 1243 (2011)CrossRefGoogle Scholar
  8. 8.
    D.K. Böhme, H. Schwarz, Angew. Chem. Int. Ed. 44, 2336 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Schlangen, H. Schwarz, Catal. Lett. 142, 1265 (2012)CrossRefGoogle Scholar
  10. 10.
    T.M. Bernhardt, U. Heiz, U. Landman, Chemical and Catalytic Properties of Size-selected Free and Deposited Clusters, in Nanocatalysis, edited by U. Heiz, U. Landman (Springer-Verlag, Berlin, 2007)Google Scholar
  11. 11.
    Y. Negishi, W. Kurashige, Y. Niihori, T. Iwasa, K. Nobusada, Phys. Chem. Chem. Phys. 12, 6219 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Negishi, K. Igarashi, K. Munakata, W. Ohgake, K. Nobusada, Chem. Commun. 48, 660 (2012)CrossRefGoogle Scholar
  13. 13.
    C.A. Fields-Zinna, M.C. Crowe, A. Dass, J.E.F. Weaver, R.W. Murray, Langmuir 25, 7704 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Koyasu, M. Mitsui, A. Nakajima, K. Kaya, Chem. Phys. Lett. 358, 224 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Z.J. Wu, S.H. Zhou, J.S. Shi, S.Y. Zhang, Chem. Phys. Lett. 368, 153 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    G. Zanti, D. Peeters, J. Phys. Chem. A 114, 10345 (2010)CrossRefGoogle Scholar
  17. 17.
    J.-J. Guo, J.-X. Yang, D. Die, Physica B 367, 158 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Joshi, W.N. Delgass, K.T. Thomson, J. Phys. Chem. B 110, 23373 (2006)CrossRefGoogle Scholar
  19. 19.
    A.M. Joshi, M.H. Tucker, W.N. Delgass, K.T. Thomson, J. Chem. Phys. 125, 194707 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    B.A. Wells, A.L. Chaffee, J. Chem. Phys. 129, 164712 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S.-L. Peng, L.-Y. Gan, R.-Y. Tian, Y.-J. Zhao, Comput. Theor. Chem. 977, 62 (2011)CrossRefGoogle Scholar
  22. 22.
    T.M. Bernhardt, Int. J. Mass Spectrom. 243, 1 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    R. Keller, F. Nöhmayer, P. Spädtke, M.-H. Schönenberg, Vacuum 34, 31 (1984)CrossRefGoogle Scholar
  24. 24.
    E. Schuhmacher, DETMECH-Chemical Reaction Kinetics Software (University of Bern, 2003)Google Scholar
  25. 25.
    T.M. Bernhardt, J. Hagen, S.M. Lang, D.M. Popolan, L.D. Socaciu-Siebert, L. Wöste, J. Phys. Chem. A 113, 2724 (2009)CrossRefGoogle Scholar
  26. 26.
    J.I. Steinfeld, J.S. Francisco, W.L. Hase, Chemical kinetics and Dynamics, 2nd edn. (Prentice-Hall, Upper Saddle River, NJ, 1999)Google Scholar
  27. 27.
    P.M. Langevin, Ann. Chem. Phys. 5, 245 (1905)zbMATHGoogle Scholar
  28. 28.
    R.A. Marcus, J. Chem. Phys. 20, 359 (1952)ADSCrossRefGoogle Scholar
  29. 29.
    S.M. Lang, T.M. Bernhardt, B. Yoon, U. Landman, J. Am. Chem. Soc. 131, 8939 (2009)CrossRefGoogle Scholar
  30. 30.
    D.M. Cox, R. Brickman, K. Creegan, A. Kaldor, Z. Phys. D 19, 353 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    D.M. Cox, R. Brickman, K. Creegan, A. Kaldor, Mat. Res. Soc. Symp. Proc. 206, 43 (1991)CrossRefGoogle Scholar
  32. 32.
    X. Ding, Z. Li, J. Yang, J.G. Hou, Q. Zhu, J. Chem. Phys. 120, 9594 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    A.M. Joshi, W.N. Delgass, K.T. Thomson, J. Phys. Chem. B 109, 22392 (2005)CrossRefGoogle Scholar
  34. 34.
    M.B. Torres, E.M. Fernández, L.C. Balbás, J. Phys. Chem. A 112, 6678 (2008)CrossRefGoogle Scholar
  35. 35.
    P.A. Hintz, K.M. Ervin, J. Chem. Phys. 103, 7897 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    L. Hilaire, P. Légaré, G. Maire, Surf. Sci. 103, 125 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    Y.-M. Chen, P.B. Armentrout, J. Chem. Phys. 103, 618 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Campbell, J.M.C. Plane, J. Phys. Chem. A 107, 3747 (2003)CrossRefGoogle Scholar
  39. 39.
    J.-J. Guo, J.-X. Yang, D. Die, Commun. Theor. Phys. 46, 155 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    B. Kalita, R.C. Deka, Eur. Phys. J. D 53, 51 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandra M. Lang
    • 1
  • Anja Frank
    • 1
  • Irene Fleischer
    • 1
  • Thorsten M. Bernhardt
    • 1
    Email author
  1. 1.Institute of Surface Chemistry and Catalysis, University of UlmUlmGermany

Personalised recommendations