Analysis of the quasicontinuum band emitted by highly ionised tungsten atoms in the 4–7 nm range

  • Teresa Isabel MadeiraEmail author
  • Pedro Amorim
  • Fernando Parente
  • Paul Indelicato
  • José Pires Marques
Regular Article


Spectra emitted by highly ionized tungsten atoms from magnetically confined plasmas show a common feature: a narrow structured quasi-continuum emission band most prominent in the range 4−7 nm, which accounts for 40−80% of the radiated power. This band has been fairly well explained by unresolved transitions from groups 4d-4p, 4f-4d (Δn = 0) and 5d-4f, 5g-4f and 5p-4d (Δn = 1). In this work we use a Multi-Configuration Dirac-Fock code in Breit self-consistent field mode to compute level energies and transition probabilities for W27+ to W37+ ions contributing to this emission band. Intra-shell correlation was introduced in the calculation for both initial and final states and all dipole and quadrupole radiative transitions have been considered. The wavefunctions in the initial and final states are optimized separately and the resulting non-orthogonality effect is fully taken into account. The importance of some satellite lines was assessed. Together with the ionic distributions obtained by using the FLYCHK application and assuming that the initial states population depends statistically on the temperature we were able to synthesize plasma emission spectrum profiles for several electron temperatures.


Atomic Physics 


  1. 1.
    M. Klapisch, J.L. Schwob, M. Finkenthal, B.S. Fraenkel, S. Egert, A. Bar-Shalom, C. Breton, C. DeMichelis, M. Mattioli, Phys. Rev. Lett. 41, 403 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    M. Bitter, K.W. Hill, N.R. Sauthoff, P.C. Efthimion, E. Meservey, W. Roney, S.V. Goeler, R. Horton, M. Goldman, W. Stodiek, Phys. Rev. Lett. 43, 129 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    E. Kallne, J. Kallne, J.E. Rice, Phys. Rev. Lett. 49, 330 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Martins, J.P. Marques, A.M. Costa, J.P. Santos, F. Parente, S. Schlesser, E.-O.L. Bigot, P. Indelicato, Phys. Rev. A 80, 032501 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J.P. Santos, M.C. Martins, A.M. Costa, J.P. Marques, P. Indelicato, F. Parente, Phys. Scr. T144, 014005 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T. Pütterich, R. Neu, C. Biedermann, R. Radtke, ASDEX Upgrade Team, J. Phys. B 38, 3071 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A.H. Gabriel, C. Jordan, Phys. Lett. A 32, 166 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Gauthier, J.P. Geindre, P. Monier, E. Luckoenig, J.F. Wyart, J. Phys. B 19, L385 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    D.D. Dietrich, G.A. Chandler, R.J. Fortner, C.J. Hailey, R.E. Stewart, Phys. Rev. Lett. 54, 1008 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    P.H. Mokler, S. Reusch, A. Warczak, Z. Stachura, T. Kambara, A. Muller, R. Schuch, M. Schulz, Phys. Rev. Lett. 65, 3108 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    P. Beiersdorfer, A.L. Osterheld, J. Scofield, B. Wargelin, R.E. Marrs, Phys. Rev. Lett. 67, 2272 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    K.B. Fournier, W.H. Goldstein, M. May, M. Finkenthal, Phys. Rev. A 53, 709 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    T. Pütterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O’Mullane, the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 50, 085016 (2008)Google Scholar
  14. 14.
    C. Biedermann, R. Radtke, AIP Conf. Proc. 1125, 107 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    R. Isler, R. Neidigh, R. Cowan, Phys. Lett. A 63, 295 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    R. Radtke, C. Biedermann, J.L. Schwob, P. Mandelbaum, R. Doron, Phys. Rev. A 64, 012720 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    V. Jonauskas, S. Kucas, R. Karazija, J. Phys. B 40, 2179 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y.J. Rhee, D.H. Kwon, Int. J. Mass Spectrom. 271, 45 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    C.S. Harte, C. Suzuki, T. Kato, H.A. Sakaue, D. Kato, K. Sato, N. Tamura, S. Sudo, R. D’Arcy, E. Sokell, J. White, G. O’Sullivan, J. Phys. B 43, 205004 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    E. Biémont, C.J. Zeippen, Comments At. Mol. Phys. 33, 29 (1996)Google Scholar
  21. 21.
    H.-K Chung, M.H. Chen, W.L. Morgan, Yu. Ralchenko, R.W. Lee, High Energy Density Phys. 1, 3 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    H. Ray, Astrophys. J. 579, 914 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Desclaux, in Methods and Techniques in Computational Chemistry: Small Systems of METTEC, edited by E. Clementi (STEF, Cagliary, 1993), Vol. A, p. 253Google Scholar
  24. 24.
    J.P. Desclaux, Comput. Phys. Commun. 9, 31 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    P. Indelicato, J.P. Desclaux, MCDFGME, a multi-configuration Dirac-Fock and general matrix elements program (v.2011),
  26. 26.
    I.P. Grant, H.M. Quiney, Adv. At. Mol. Phys. 23, 37 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    P. Indelicato, Phys. Rev. A 51, 1132 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    O. Gorceix, P. Indelicato, Phys. Rev. A 37, 1087 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    E. Lindroth, A.M. Märtensson-Pendrill, Phys. Rev. A 39, 3794 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    G. Audi, A. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    P. Indelicato, Phys. Rev. Lett. 77, 3323 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    P. Indelicato, Hyp. Int. 108, 39 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    P.O. Löwdin, Phys. Rev. 97, 1474 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Y. Ishikawa, H.M. Quiney, G.L. Malli, Phys. Rev. A 43, 3270 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    I.I. Sobel’man, Introduction to the Theory of Atomic, Spectra (Pergamon Press, Oxford, 1972), p. 300Google Scholar
  38. 38.
    Burning Plasma Diagnostics AIP Conference Proceedings, edited by F.P. Orsitto, G. Gorini, E. Sindoni, M. Tardochi (American Institute of Physics, Melville, New York, 2008), Vol. 988Google Scholar
  39. 39.
    R.W.P. McWhirter, in Plasma Physics and Nuclear Fusion Research, Chapter 10: Plasma Radiation (Academic Press, London, 1981)Google Scholar
  40. 40.
    G. Zhuang, R. Behn, I. Klimanov, P. Nikkola, O. Sauter, Plasma Phys. Control. Fusion 47, 1539 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    T.I. Madeira, Ph.D. thesis, IST-UTL, Lisbon, Portugal, 2009Google Scholar
  42. 42.
    E. de la Luna, V. Krivenski, G. Giruzzi, C. Gowers, R. Prentice, J.M. Travere, M. Zerbini, Rev. Sci. Instrum. 74, 1414 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    M. Finkenthal, L.K. Huang, S. Lippmann, H.W. Moos, P. Mandelbaum, J.L. Schwob, M. Klapisch, Phys. Lett. 127, 255 (1988)CrossRefGoogle Scholar
  44. 44.
    K.B. Fournier, W.H. Goldstein, M. May, M. Finkenthal, Phys. Rev. A 53, 709 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Teresa Isabel Madeira
    • 1
    Email author
  • Pedro Amorim
    • 1
  • Fernando Parente
    • 2
  • Paul Indelicato
    • 3
  • José Pires Marques
    • 1
  1. 1.Centro de Física Atómica e Departamento de Física da Faculdade de Ciências da Universidade de LisboaLisboaPortugal
  2. 2.Centro de Física Atómica e Departamento de Física da Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparicaPortugal
  3. 3.Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, Université Paris 6Paris Cedex 5France

Personalised recommendations