Advertisement

Interplay of structural and electronic stabilizing factors in neutral and cationic phosphine protected Au13 clusters

  • B. Fresch
  • E. Hanozin
  • F. Dufour
  • F. RemacleEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Stable ligand protected sub-nanometer metal clusters exist as different structural isomers which mainly differ by the geometry of the metal core. The structural and electronic properties of the bare and phosphine protected gold, Au13, clusters were theoretically investigated in order to elucidating the relation between different metal core geometries, electronic structures and the stability of the complex. For neutral and low (3+) charged bare clusters, bilayers and flake geometries are computed to be more stable than the icosahedral geometry while for the cation 5+ the most stable metal core exhibits a regular icosahedral geometry. Flake geometries are composed of edge-fused gold tetrahedron motifs and triangular rings. The binding with phosphine induces their stabilization with respect to the bilayer and icosahedral structures. Unexpectedly, the stabilization of the ligated flake geometry with respect to the compact icosahedral-based core increases with the positive overall charge of the complex, being maximum for the highly charged species [Au13 (PH3)10]5+. The origin of the stability is explained in connection with electronic structure and the charge transfer induced by the ligand shell. The distribution of the spin density of the neutral Au13(PH3)12 with a flat cage metal core is characterized.

Keywords

Phosphine Gold Cluster Gold Atom Metal Core Frontier Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Pyykko, Chem. Soc. Rev. 37, 1967 (2008)CrossRefGoogle Scholar
  2. 2.
    J.R. Shakirova, E.V. Grachova, V.V. Gurzhiy, I.O. Koshevoy, A.S. Melnikov, O.V. Sizova, S.P. Tunik, A. Laguna, Dalton Trans. 41, 2941 (2012)CrossRefGoogle Scholar
  3. 3.
    E.S. Shibu, M.A.H. Muhammed, T. Tsukuda, T. Pradeep, J. Phys. Chem. C 112, 12168 (2008)CrossRefGoogle Scholar
  4. 4.
    C.L. Heinecke, T.W. Ni, S. Malola, V. Mäkinen, O.A. Wong, H. Häkkinen, C.J. Ackerson, J. Am. Chem. Soc. 134, 13316 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Periyasamy, F. Remacle, Nano Lett. 9, 3007 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    M. Wang, Z. Wu, J. Yang, G. Wang, H. Wang, W. Cai, Nanoscale 4, 4087 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    B. Fresch, H.G. Boyen, F. Remacle, Nanoscale 4, 4138 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Sardar, A.M. Funston, P. Mulvaney, R.W. Murray, Langmuir 25, 13840 (2009)CrossRefGoogle Scholar
  10. 10.
    R.W. Murray, Chem. Rev. 108, 2688 (2008)CrossRefGoogle Scholar
  11. 11.
    S.W. Boettcher, N.C. Strandwitz, M. Schierhorn, N. Lock, M.C. Lonergan, G.D. Stucky, Nat. Mater. 6, 592 (2007)CrossRefGoogle Scholar
  12. 12.
    S.H. Radwan, H.M.E. Azzazy, Expert Rev. Mol. Diagn. 9, 511 (2009)CrossRefGoogle Scholar
  13. 13.
    W. Jiang, Y.S. KimBetty, J.T. Rutka, C.W. ChanWarren, Nat. Nanotechnol. 3, 145 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P.C. Wang, S. He, X. Zhang, X.-J. Liang, ACS Nano. 6, 4483 (2012)CrossRefGoogle Scholar
  15. 15.
    T. Ishida, M. Haruta, Angew. Chem. Int. Ed. 46, 7154 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei, M. Haruta, Angew. Chem. 120, 9405 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Maity, S. Xie, M. Yamauchi, T. Tsukuda, Nanoscale 4, 4027 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Kamei, Y. Shichibu, K. Konishi, Angew. Chem. Int. Ed. 50, 7442 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Shichibu, Y. Kamei, K. Konishi, Chem. Commun. 48, 7559 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Shichibu, K. Suzuki, K. Konishi, Nanoscale 4, 4125 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Pei, Y. Gao, N. Shao, X.C. Zeng, J. Am. Chem. Soc. 131, 13619 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Pyykko, Chem. Rev. 88, 563 (1988)CrossRefGoogle Scholar
  23. 23.
    P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmaker, P.D.W. Boyd, J. Chem. Phys. 91, 1762 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 033401 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    H. Häkkinen, Chem. Soc. Rev. 37, 1847 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. 105, 9157 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    Gaussian 09, Revision A.02, edited by M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox (Gaussian, Inc., Wallingford, CT, 2009)Google Scholar
  32. 32.
    D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chem. Acc.: Theor. Comput. Mod. 77, 123 (1990)CrossRefGoogle Scholar
  33. 33.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  35. 35.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S.A. Kucharski, M. Musial, J. Am. Chem. Soc. 127, 1049 (2004)CrossRefGoogle Scholar
  39. 39.
    J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)CrossRefGoogle Scholar
  40. 40.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)CrossRefGoogle Scholar
  41. 41.
    A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    U.C. Singh, P.A. Kollman, J. Comput. Chem. 5, 129 (1984)CrossRefGoogle Scholar
  43. 43.
    B.H. Besler, K.M. Merz, P.A. Kollman, J. Comput. Chem. 11, 431 (1990)CrossRefGoogle Scholar
  44. 44.
    F.L. Hirshfeld, Theor. Chem. Acc.: Theor. Comput. Mod. 44, 129 (1977)CrossRefGoogle Scholar
  45. 45.
    J.P. Ritchie, J. Am. Chem. Soc. 107, 1829 (1985)CrossRefGoogle Scholar
  46. 46.
    J.P. Ritchie, S.M. Bachrach, J. Comput. Chem. 8, 499 (1987)CrossRefGoogle Scholar
  47. 47.
    H. Häkkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai, L.-S. Wang, J. Phys. Chem. A 107, 6168 (2003)CrossRefGoogle Scholar
  48. 48.
    S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 116, 4094 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    L.-M. Wang, L.-S. Wang, Nanoscale 4, 4038 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    X. Xing, B. Yoon, U. Landman, J.H. Parks, Phys. Rev. B 74, 165423 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    L. Xiao, L. Wang, Chem. Phys. Lett. 392, 452 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    M.J. Piotrowski, P. Piquini, J.L.F. Da Silva, Phys. Rev. B 81, 155446 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    L.L. Wang, D.D. Johnson, Phys. Rev. B 75, 235405 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    T. Futschek, M. Marsman, J. Hafner, J. Phys.: Condens. Matter 17, 5927 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    M. Zhu, C.M. Aikens, M.P. Hendrich, R. Gupta, H. Qian, G.C. Schatz, R. Jin, J. Am. Chem. Soc. 131, 2490 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ChemistryB6c, University of LiègeLiègeBelgium
  2. 2.Laboratoire de Chimie de la Matière CondenséeParis Cedex 05France

Personalised recommendations