Advertisement

Studies of corona and back discharges in carbon dioxide

  • Tadeusz CzechEmail author
  • Arkadiusz Tomasz Sobczyk
  • Anatol Jaworek
  • Andrzej Krupa
  • Eryk Rajch
Regular Article

Abstract

Results of spectroscopic investigations and current-voltage characteristics of corona and back discharges generated in point-plane electrode geometry in CO2 at atmospheric pressure for positive and negative polarity of the discharge electrode are presented in the paper. Three forms of back discharge, for both polarities, were investigated: glow, streamer and low-current back-arc. To generate the back-discharges for the conditions similar to electrostatic precipitator, the plate electrode was covered with fly ash layer. In order to characterize back discharge processes, the emission spectra were measured and compared with those obtained for normal discharge, generated in the same electrode configuration but without the fly ash layer on the plate electrode. The measurements have shown that optical emission spectral lines of atoms and molecules, excited or ionised in back discharge, depend on the forms of the discharge, the discharge current, and are different in the zones close to needle electrode and fly ash layer. From the comparison of spectral lines of back and normal discharges, an effect of fly ash layer on discharge characteristics and morphology has been determined. In normal corona, the emission spectra are mainly predetermined by the working gas components, but in the case of back discharge, the atomic and molecular lines, resulting from chemical composition of fly ash, are also identified. Differences in the spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. For back arc, the emission of spectral lines of atoms and molecules from fly ash layer can be recorded in the crater zone, but in the needle zone, only the emission lines of CO2 and its decomposition products (CO and C2) can be noticed. The studies of back discharge in CO2, as one of the main components of flue gases, were undertaken because this type of discharge, after unwanted inception, decreases the energy and collection efficiencies of electrostatic precipitator. The second reason behind these studies is that CO2 is the main component of flue gas leaving oxyfuel boiler that re-circulates in the combustion-precipitation cycle. It was shown that discharges in CO2 lead to contamination of discharge electrode with carbonaceous products that can cause severe maintenance problems of electrostatic precipitator. The recognition of the characteristics of electrostatic precipitator operating in the oxyfuel system is, therefore, of crucial importance for exhaust gas cleaning in modern combustion systems.

Keywords

Plasma Physics 

References

  1. 1.
    H.J. White, Industrial Electrostatic Precipitation (Perga-mon Press, Oxford, 1963)Google Scholar
  2. 2.
    H.J. White, J. Air Poll. Contr. Assoc. 24, 314 (1974)CrossRefGoogle Scholar
  3. 3.
    S. Masuda, A. Mizuno, J. Electrostat 4, 35 (1977/1978)CrossRefGoogle Scholar
  4. 4.
    S. Masuda, A. Mizuno, J. Electrostat. 4, 215 (1978)CrossRefGoogle Scholar
  5. 5.
    S. Masuda, A. Mizuno, M. Akimoto, J. Electrostat. 6, 333 (1979)CrossRefGoogle Scholar
  6. 6.
    H.R. Griem, Plasma spectroscopy (McGraw-Hill Book Company, New York, San Francisco, Toronto, London, 1964)Google Scholar
  7. 7.
    Y.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Appl. Phys. 35, 751 (2002)Google Scholar
  8. 8.
    A.H. Timmermans, Ph.D. thesis, Eindhoven, 1999Google Scholar
  9. 9.
    J.E. Harry, Q. Yuan, Int. J. Electron. 87, 1105 (2000)CrossRefGoogle Scholar
  10. 10.
    Y. Manabe, T. Shimazaki, IEEE Trans. Dielectr. Electr. Insul. 11, 631 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Denat, N. Bonifaci, M. Nur, IEEE Trans. Dielectr. Electr. Insul. 5, 382 (1998)CrossRefGoogle Scholar
  12. 12.
    K. Shimizu, T. Oda, Sci. Technol. Adv. Mater. 2, 577 (2001)CrossRefGoogle Scholar
  13. 13.
    B. Hrycak, M. Jasiñski, J. Mizeraczyk, Eur. Phys. J. D 60, 609 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.H. Timmermans, J. Jonkers, I.A.J. Thomas, A. Rodero, M.C. Quintero, A.M. Sola, A. Gamero, J.A.M. van der Mullen, Spectrochim. Acta, Part B 53, 1553 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    A. Jaworek, T. Czech, A. Krupa, Plasma Phys. 36, 619 (1996)CrossRefGoogle Scholar
  16. 16.
    A. Jaworek, T. Czech, E. Rajch, M. Lackowski, J. Electrostat. 64, 306 (2006)Google Scholar
  17. 17.
    A. Jaworek, A. Sobczyk, E. Rajch, J. Phys. Conf. Ser. 142, 012040 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T. Czech, A.T. Sobczyk, A. Jaworek, Eur. Phys. J. D 65, 459 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Ch. Sheng, Y. Li, X. Liu, H. Yao, M. Xu, Fuel Proc. Technol. 88, 1021 (2007)CrossRefGoogle Scholar
  20. 20.
    Y. Wen, X. Jiang, Plasma Chem. Plasma Proc. 21, 665 (2001)CrossRefGoogle Scholar
  21. 21.
    C. Rond, A. Bultel, P. Boubert, B.G. Chéron, Chem. Phys. 354, 16 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    P-H. Su, Y.-M. Zhu, S. Yang, J. Electrostat. 66, 193 (2008)CrossRefGoogle Scholar
  23. 23.
    R.W.B. Pearse, A.G. Gaydon, The Identification of Molec-ular Spectra (Chapman and Hall, London, 1963)Google Scholar
  24. 24.
    A.R. Striganov, N.S. Sventickij, Spectral Lines of Neutral and Ionized Atoms (Moskva Atomizdat., Izd. Nauka, 1966) (in Rusian)Google Scholar
  25. 25.
    B. Han, H.J. Kim, Y.J. Kim, Sci. Total Environ. 408, 5158 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Suriyawong, Ch.J. Hogan, J. Jiang, P. Biswas, Fuel 87, 673 (2008)CrossRefGoogle Scholar
  27. 27.
    M.C. Carbo, D. Jansen, Ch. Hendriks, E. de Visser, G.J. Ruijg, J. Davison, Energy Procedia 1, 487 (2009)CrossRefGoogle Scholar
  28. 28.
    A. Doukelis, I. Vorrias, P. Grammelis, E. Kakaras, M. Whitehouse, G. Riley, Fuel 88, 2428 (2009)CrossRefGoogle Scholar
  29. 29.
    R. Stanger, T. Wall, Progr. Energy Combust. Sci. 37, 69 (2011)CrossRefGoogle Scholar
  30. 30.
    F. Winkler, N. Schoedel, H.-J. Zander, R. Ritter, Int. J. Greenhouse Gas Contr. 5S, S231 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Hu, J. Yan, Appl. Energy 90, 113 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Bäck, J. Grubbström, H. Ecke, M. Strand, J. Pettersson, Int. J. Plasma Environ. Sci. Technol. 5, 141 (2011)Google Scholar
  33. 33.
    Y. Mitsui, N. Imada, H. Kikkawa, A. Katagawa, Int. J. Greenhouse Gas Contr. 5S, S143 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Strömberg, G. Lindgren, J. Jacoby, R. Giering, M. Anheden, U. Burchhardt, H. Altmann, F. Kluger, G.-N. Stamatelopoulos, Energy Procedia 1, 581 (2009)CrossRefGoogle Scholar
  35. 35.
    T. Ohkubo, S. Kanazawa, Y. Nomoto, M. Kocik, J. Mizeraczyk, J. Adv. Oxid. Technol. 8, 218 (2005)Google Scholar
  36. 36.
    T. Czech, A.T. Sobczyk, A. Jaworek, A. Krupa, J. Electrostat. 70, 269 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Sun, Y. Wu, J. Li, N.H. Wang, J. Wu, K.F. Shang, J.L. Zhang, Plasma Chem. Plasma Proc. 25, 31 (2005)zbMATHCrossRefGoogle Scholar
  38. 38.
    A. Krupa, M. Lackowski, T. Czech, J. Phys.: Conf. Ser. 142, 012040 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    E. Rajch, A. Jaworek, A.T. Sobczyk, A. Krupa, Czech. J. Phys. 56, B803 (2006)CrossRefGoogle Scholar
  40. 40.
    M.A. Malik, X.Z. Jiang, Plasma Chem. Plasma Process. 19, 505 (1999)CrossRefGoogle Scholar
  41. 41.
    M. Janda, V. Martisovits, M. Morvova, Z. Machala, K. Hensel, Eur. Phys. J. D 45, 309 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    A.T. Sobczyk, A. Jaworek, M. Sozañska, J. Electrostat. 67, 275 (2009)CrossRefGoogle Scholar
  43. 43.
    A.T. Sobczyk, A. Jaworek, Z. Sobisz, Mater. Sci. Poland 30, 53 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    J.H. Davidson, P.J. McKinney, Aerosol Sci. Technol. 29, 102 (1998)CrossRefGoogle Scholar
  45. 45.
    T. Tomai, K. Katahira, H. Kubo, Y. Shimizu, N. Koshizaki, K. Terashima, Supercrit. Fluids 41, 404 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tadeusz Czech
    • 1
    Email author
  • Arkadiusz Tomasz Sobczyk
    • 1
  • Anatol Jaworek
    • 2
  • Andrzej Krupa
    • 1
  • Eryk Rajch
    • 1
  1. 1.Institute of Fluid Flow Machinery, Polish Academy of Scienceul. Fiszera14Poland
  2. 2.Institute of Physics, Pomeranian AcademySłupskPoland

Personalised recommendations