Advertisement

Observation of new near infrared emission band systems of small bismuth clusters in solid neon matrix

  • Tomonari WakabayashiEmail author
  • Makiko Tomioka
  • Yoriko Wada
  • Yuki Miyamoto
  • Jian Tang
  • Kentarou Kawaguchi
  • Susumu Kuma
  • Noboru Sasao
  • Hajime Nanjo
  • Satoshi Uetake
  • Motohiko Yoshimura
  • Itsuo Nakano
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Laser induced fluorescence (LIF) spectroscopy was applied to small bismuth clusters embedded in a solid neon matrix at 3 K. Near infrared (NIR) optical emission spectra were recorded in a range of 6200–11 600 cm-1 by an excitation with 1.79 eV photons using a pulsed dye laser system. Three new NIR band systems were identified by their origin bands at 8207, 9625 and 11 395 cm-1. Each of the NIR systems exhibited the vibrational progression with a common lower state frequency at 151 cm-1. Temporal decay profiles for selected NIR emission bands showed upper state lifetimes on the order of a hundred of microseconds, explainable by the transition between mixed spin states. Low-lying electronic states for small bismuth clusters, Bi n (n = 2 − 4), are discussed along the theory and experiment reported so far.

Keywords

Bismuth Laser Induce Fluorescence Band System Optical Emission Spectrum Satellite Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Grotrian, Z. Phys. 18, 169 (1923)ADSCrossRefGoogle Scholar
  2. 2.
    G.M. Almy, F.M. Sparks, Phys. Rev. 44, 365 (1933)ADSCrossRefGoogle Scholar
  3. 3.
    G. Gerber, K. Sakurai, H.P. Broida, J. Chem. Phys. 64, 3410 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    G. Gerber, H.P. Broida, J. Chem. Phys. 64, 3423 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Teichman, E.R. Nixon, J. Chem. Phys. 67, 2470 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    V.E. Bondybey, J.H. English, J. Chem. Phys. 73, 42 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    V.E. Bondybey, G.P. Schwartz, J.E. Griffiths, J.H. English, Chem. Phys. Lett. 76, 30 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    K. Manzel, U. Engelhardt, H. Abe, W. Schulze, F.W. Froben, Chem. Phys. Lett. 77, 514 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    F. Ahmed, E.R. Nixon, J. Chem. Phys. 74, 2156 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    F. Ahmed, E.R. Nixon, J. Chem. Phys. 75, 110 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    S. Drosch, G. Gerber, J. Chem. Phys. 77, 123 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    C. Effantin, A. Topouzkhanian, J. Figuet, J. d’Incan, R.F. Barrow, J. Verges, J. Phys. B: At. Mol. Phys. 15, 3829 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    B. Eberle, H. Sontag, R. Wever, Chem. Phys. 92, 417 (1985)CrossRefGoogle Scholar
  14. 14.
    B. Eberle, H. Sontag, R. Wever, Surf. Sci. 156, 751 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    E.H. Fink, K.D. Setzer, D.A. Ramsay, M. Vervloet, Chem. Phys. Lett. 179, 103 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    M.L. Polak, J. Ho, G. Gerber, W.C. Lineberger, J. Chem. Phys. 95, 3053 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    K. Balasubramanian, D.-W. Liao, J. Chem. Phys. 95, 3064 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    K.K. Das, H.-P. Liebermann, R.J. Buenker, G. Hirsch, J. Chem. Phys. 102, 4518 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    R.F. Barrow, F. Taher, J. d’Incan, C. Effantin, A.J. Ross, A. Topouzkhanian, G. Wannous, J. Verges, Mol. Phys. 87, 725 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    T. Wakabayashi, A.-L. Ong, W. Krätschmer, J Chem. Phys. 116, 5996 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    A. Fukumi, S. Kuma, Y. Miyamoto, K. Nakajima, I. Nakano, H. Nanjo, C. Ohae, N. Sasao, M. Tanaka, T. Taniguchi, S. Uetake, T. Wakabayashi, T. Yamaguchi, A. Yoshimi, M. Yoshimura, Prog. Theor. Exp. Phys. (in press)Google Scholar
  22. 22.
    H. Zhang, K. Balasubramanian, J. Chem. Phys. 97, 3437 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    H. Köppel, W. Domcke, L.S. Cederbaum, Advances in Chemical Physics (John Wiley & Sons, New York, 1984), Vol. LVII, p. 59Google Scholar
  24. 24.
    D. Opalka, M. Segado, L.V. Poluyanov, W. Domcke, Phys. Rev. A 81, 042501 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    D. Opalka, L.V. Poluyanov, W. Domcke, J. Chem. Phys. 135, 104108 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Kelting, A. Baldes, U. Schwarz, T. Rapps, D. Schooss, P. Weis, C. Neiss, F. Weigend, M.M. Kappes, J. Chem. Phys. 136, 154309 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Jia, G.B. Chen, D.N. Shi, B.L. Wang, Eur. Phys. J. D 47, 359 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    H.K. Yuan, H. Chen, A.L. Kuang, Y. Miao, Z.H. Xiong, J. Chem. Phys. 128, 094305 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    L. Gao, P. Li, H. Lu, S.F. Li, Z.X. Guo, J. Chem. Phys. 128, 194304 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hayashi, S. Deki, Adv. Mater. 21, 3694 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomonari Wakabayashi
    • 1
    Email author
  • Makiko Tomioka
    • 1
  • Yoriko Wada
    • 1
  • Yuki Miyamoto
    • 2
  • Jian Tang
    • 2
  • Kentarou Kawaguchi
    • 2
  • Susumu Kuma
    • 3
  • Noboru Sasao
    • 3
  • Hajime Nanjo
    • 4
  • Satoshi Uetake
    • 5
  • Motohiko Yoshimura
    • 5
  • Itsuo Nakano
    • 2
    • 5
  1. 1.Interdisciplinary Graduate School of Science and Engineering, Kinki UniversityHigashi-OsakaJapan
  2. 2.Graduate School of Natural Science and Technology, Okayama UniversityOkayamaJapan
  3. 3.Research Core for Extreme Quantum World, Okayama UniversityOkayamaJapan
  4. 4.Department of PhysicsGraduate School of Science, Kyoto UniversityKyotoJapan
  5. 5.Research Center for Quantum Universe, Okayama UniversityOkayamaJapan

Personalised recommendations