Advertisement

Effect of structure and size on the excited states dynamics of CaArn clusters

  • Jose J. Plata
  • Marie-Catherine Heitz
  • Fernand SpiegelmanEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The time-resolved photoelectron spectra, probing the non-adiabatic dynamics of CaAr n clusters excited by a pump pulse in the vicinity of the 4s4p   1P line of calcium, are simulated. The simulations involve Diatomics-In-Molecules modelling of the excited electronic structure, excited states dynamics with electronic transitions, and classical approximations to derive the time-resolved photoelectron spectra. The oscillations in the time-dependence of the spectra, associated with the relative motion of calcium with respect to the argon cluster, and the corresponding nonadiabatic relaxation processes are analysed according to cluster size (n ≈ 55 and 147), structure (icosahedral versus cuboctahedral shape) and local environment (substitution versus surface deposition of calcium, surface type).

Keywords

Pump Pulse Probe Pulse Electronic Ground State Electronic Excited State Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.H. Zewail, Femtochemistry, Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994)Google Scholar
  2. 2.
    M.M. Martin, J.T. Hynes, Femtochemistry and Femtobiology (Elsevier, Amsterdam, 2004)Google Scholar
  3. 3.
    David C. Clary (ed.), Femtochemistry and Femtobiology – Papers associated with the 8th International Conference on Femtochemistry and Femtobiology, Chem. Phys. 350, 1 (2008)Google Scholar
  4. 4.
    J.P. Visticot, P. de Pujo, J.M. Mestdagh, A. Lallement, J. Berlande, O. Sublemontier, P. Meynadier, J. Cuvellier, J. Chem. Phys. 100, 158 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    B. Schilling, M.A. Gaveau, O. Sublemontier, J.M. Mestdagh, J.P. Visticot, X. Biquard, J. Berlande, J. Chem. Phys. 101, 5772 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    M. Briant, P.R. Fournier, M.A. Gaveau, J.M. Mestdagh, B. Soep, J.P. Visticot, J. Chem. Phys. 117, 5036 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Gaveau, J.M. Mestdagh, T. Bouissou, G. Durand, M.-C. Heitz, F. Spiegelman, Chem. Phys. Lett. 467, 260 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A. Masson, L. Poisson, M.A. Gaveau, B. Soep, J.M. Mestdagh, V. Mazet, F. Spiegelman, J. Chem. Phys. 133, 054307 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    N. Yu, M.C. Margulis, D.F. Coker, J. Chem. Phys. 120, 3657 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    H. Tao, B.G. Levine, T.J. Martinez, J. Phys. Chem. A 113, 13656 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Douady, E. Jacquet, E. Giglio, D. Zanuttini, B. Gervais, Chem. Phys. Lett. 476, 163 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A.L. Thompson, T.J. Martinez, Farad. Disc. 150, 293 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M. Wohlgemuth, V. Bonacic-Koutecky, R. Mitric, J. Chem. Phys. 135, 054105 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P.G. Lisinetskaya, R. Mitric, Phys. Rev. A 83, 033408 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Stanzel, M. Neeb, W. Eberhardt, P.G. Lisinetskaya, J. Petersen, R. Mitric, Phys. Rev. A 85, 013201 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M.-C. Heitz, L. Teixidor, V.-O. Nguyen-Thi, F. Spiegelman, J. Phys. Chem. A 114, 3287 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Farges, M.-F. de Feraudy, B. Raoult, G. Torchet, J. Chem. Phys. 84, 3491 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    B. Raoult, J. Farges, M.-F. de Feraudy, G. Torchet, Philos. Mag. B 60, 881 (1989)CrossRefGoogle Scholar
  19. 19.
    B.W. van de Waal, J. Chem. Phys. 90, 3407 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    B.W. van de Waal, J. Chem. Phys. 98, 4909 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    J. Xie, J.A. Northby, D.L. Freeman, J.D. Doll, J. Chem. Phys. 91, 612 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    B.W. van de Waal, Phys. Rev. Lett. 76, 1083 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    A.I. Krylov, R.B. Gerber, M.A. Gaveau, J.M. Mestdagh, B. Schilling, J.P. Visticot, J. Chem. Phys. 104, 3651 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    P. Jungwirth, R.B. Gerber, J. Chem. Phys. 104, 5803 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Gaveau, M. Briant, P.R. Fournier, J.M. Mestdagh, J.P. Visticot, F. Calvo, S. Baudrand, F. Spiegelman, Eur. Phys. J. D 21, 153 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Aziz, H.H. Chen, J. Chem. Phys. 67, 5719 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    F. Spiegelman, L. Maron, W.H. Breckenridge, J.M. Mestdagh, J.P. Visticot, J. Chem. Phys. 117, 7534 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    K.N. Kirschner, J. Chem. Phys. 112, 10228 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    E. Czuchaj, M. Krosnicki, H. Stoll, Chem. Phys. 292, 101 (2003)CrossRefGoogle Scholar
  30. 30.
    J.C. Tully, J. Chem. Phys. 93, 1061 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    C. Meier, V. Engel, Phys. Chem. Chem. Phys. 4, 5014 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Meier, V. Engel, Femtochemistry, edited by L. Wöste, J. Manz (VCH, Heidelberg, 1995), p. 369Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jose J. Plata
    • 1
  • Marie-Catherine Heitz
    • 2
  • Fernand Spiegelman
    • 2
    Email author
  1. 1.Departamento de Química Física, Facultad de Química, Universidad de SevillaSevillaSpain
  2. 2.Laboratoire de Chimie et de Physique Quantique/IRSAMC, CNRS and Université de Toulouse (UPS)ToulouseFrance

Personalised recommendations