Advertisement

CO oxidation by copper cluster anions

  • Shinichi Hirabayashi
  • Yoshiyuki Kawazoe
  • Masahiko Ichihashi
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Reactions of CO and O2 on size-selected copper cluster anions, Cu n - (n = 4–11), have been investigated at the collision energy of 0.2 eV by use of a guided ion beam-tandem mass spectrometer. Oxygen-adsorbed copper anions, Cu n O2 -, in particular Cu5O2 - and Cu9O2 -, show an evidence of the CO oxidation, that is, the formation of the monoxide Cu n O. The density functional theory calculation reveals that the CO oxidation occurs more exothermically on Cu5O2 - and Cu9O2 - than the other clusters. This can be explained by the relatively small dissociation energy of their Cu–O bonds. In addition, the calculations on Cu5O2 +/- indicate that the CO oxidation proceeds via a low-energy pathway for the anion owing to the structural rearrangement of the copper cluster compared to the cation.

Keywords

Collision Energy Collision Induce Dissociation Reaction Cross Section Gold Cluster Bond Dissociation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.M. Heck, R.J. Farrauto, S.T. Gulati, Catalytic Air Pollution Control: Commercial Technology (John Wiley & Sons, Inc., 2009)Google Scholar
  2. 2.
    M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989)CrossRefGoogle Scholar
  3. 3.
    A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999)CrossRefGoogle Scholar
  4. 4.
    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    U. Heiz, U. Landman, Nanocatalysis (Springer-Verlag, 2007)Google Scholar
  6. 6.
    W.T. Wallace, R.L. Whetten, J. Am. Chem. Soc. 124, 7499 (2002)CrossRefGoogle Scholar
  7. 7.
    J. Hagen, L.D. Socaciu, M. Elijazyfer, U. Heiz, T.M. Bernhardt, L. Wöste, Phys. Chem. Chem. Phys. 4, 1707 (2002)CrossRefGoogle Scholar
  8. 8.
    L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003)CrossRefGoogle Scholar
  9. 9.
    G.E. Johnson, N.M. Reilly, E.C. Tyo, A.W. Castleman Jr., J. Phys. Chem. C 112, 9730 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Bürgel, N.M. Reilly, G.E. Johnson, R. Mitrić, M.L. Kimble, A.W. Castleman Jr., V. Bonačić-Koutecký, J. Am. Chem. Soc. 130, 1694 (2008)CrossRefGoogle Scholar
  11. 11.
    L.D. Socaciu, J. Hagen, J.L. Roux, D. Popolan, T.M. Bernhardt, L. Wöste, J. Chem. Phys. 120, 2078 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    R. Mitrić, C. Bürgel, V. Bonačić-Koutecký, Proc. Natl. Acad. Sci. 104, 10314 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R.E. Leuchtner, A.C. Harms, A.W. Castleman Jr., J. Chem. Phys. 92, 6527 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Nygren, Per E.M. Siegbahn, C. Jin, T. Guo, R.E. Smalley, J. Chem. Phys. 95, 6181 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    T.H. Lee, K.M. Ervin, J. Phys. Chem. 98, 10023 (1994)CrossRefGoogle Scholar
  16. 16.
    L. Holmgren, H. Grönbeck, M. Andersson, A. Rosén, Phys. Rev. B 53, 16644 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    S. Hirabayashi, M. Ichihashi, Y. Kawazoe, T. Kondow, J. Phys. Chem. A 116, 8799 (2012)CrossRefGoogle Scholar
  18. 18.
    M.P. Irion, A. Selinger, Chem. Phys. Lett. 158, 145 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    B.J. Winter, E.K. Parks, S.J. Riley, J. Chem. Phys. 94, 8618 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    M.P. Irion, Int. J. Mass Spectrom. Ion Process. 121, 1 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    M. Andersson, J.L. Persson, A. Rosén, J. Phys. Chem. 100, 12222 (1996)CrossRefGoogle Scholar
  22. 22.
    J.U. Reveles, G.E. Johnson, S.N. Khanna, A.W. Castleman Jr., J. Phys. Chem. C 114, 5438 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Ichihashi, T. Hanmura, R.T. Yadav, T. Kondow, J. Phys. Chem. A 104, 11885 (2000)CrossRefGoogle Scholar
  24. 24.
    T. Hanmura, M. Ichihashi, R. Okawa, T. Kondow, Int. J. Mass Spectrom. 280, 184 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    O. Ingólfsson, H. Takeo, S. Nonose, J. Chem. Phys. 110, 4382 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    R.D. Levine, Molecular Reaction Dynamics (Cambridge University Press, 2005)Google Scholar
  27. 27.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 82nd edn. (CRC Press, Boca Raton, 2001)Google Scholar
  28. 28.
    J.R. Gord, R.J. Bemish, B.S. Freiser, Int. J. Mass Spectrom. Ion Process. 102, 115 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    M.J. Frisch et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, 2009)Google Scholar
  30. 30.
    V.A. Spasov, T.-H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shinichi Hirabayashi
    • 1
  • Yoshiyuki Kawazoe
    • 2
  • Masahiko Ichihashi
    • 3
  1. 1.East Tokyo Laboratory, Genesis Research InstituteChibaJapan
  2. 2.Institute for Materials Research, Tohoku UniversitySendaiJapan
  3. 3.Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo Laboratory, Genesis Research InstituteChibaJapan

Personalised recommendations