Advertisement

Modeling thiolate-protected gold clusters with density-functional tight-binding

  • Ville Mäkinen
  • Pekka Koskinen
  • Hannu Häkkinen
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Thiolate-protected gold clusters are complex systems, in which both the surface-covalent Au-S bond and electronic structure of the gold core play an important role for the stability. In this study, a charge-self-consistent density-functional tight-binding parametrization for these systems is validated by studying Au25(SMe)18 -, Au102(SMe)44 and Au144(SMe)60 clusters, where recent X-ray structure determinations and density-functional calculations have revealed the detailed atomic structures and electronic properties. We show that the cluster geometries obtained from the tight-binding structure relaxation preserve the Divide and Protect structure motif [H. Häkkinen, M. Walter, H. Grönbeck, J. Phys. Chem. B 110, 9927 (2006)], where the gold core is protected by a number of oligomeric Au x (SR) y units. Furthermore, the electron shell structure in the metal core, composed of Au(6s) electrons, is reproduced. We conclude that the density-functional tight-binding method describes these systems well and offers a possibility to explore their dynamical phenomena.

Keywords

Density Functional Theory Density Functional Theory Calculation Mulliken Charge Gold Core Electron Shell Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Adv. Mater. 8, 428 (1996)CrossRefGoogle Scholar
  2. 2.
    A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33, 27 (2000)CrossRefGoogle Scholar
  3. 3.
    M.-C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Brust, C.J. Kiely, Colloids Surf. A 202, 175 (2002)CrossRefGoogle Scholar
  5. 5.
    R. Sardar, A.M. Funston, P. Mulvaney, R.W. Murray, Langmuir 25, 13840 (2009)CrossRefGoogle Scholar
  6. 6.
    P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318, 430 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W. Murray, J. Am. Chem. Soc. 130, 3754 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R. Jin, J. Am. Chem. Soc. 130, 5883 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 105, 27 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Grönbeck, J. Am. Chem. Soc. 130, 3756 (2008)CrossRefGoogle Scholar
  11. 11.
    O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen, J. Phys. Chem. C. (Letter) 113, 5035 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Häkkinen, Chem. Soc. Rev. 37, 1847 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun., 801 (1994)Google Scholar
  14. 14.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    H. Häkkinen, M. Walter, H. Grönbeck, J. Phys. Chem. B 110, 9927 (2006)CrossRefGoogle Scholar
  16. 16.
    P. Koskinen, H. Häkkinen, B. Huber, B.V. Issendorff, M. Moseler, Phys. Rev. Lett. 98, 015701 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    P. Koskinen, H. Häkkinen, G. Seifert, S. Sanna, Th. Frauenheim, M. Moseler, New J. Phys. 8, 9 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    P. Koskinen, V. Mäkinen, Comput. Mater. Sci. 47, 1 (2009)CrossRefGoogle Scholar
  19. 19.
    D. Porezag, Th. Frauenheim, Th. Köhler, Phys. Rev. B 51, 19 (1995)CrossRefGoogle Scholar
  20. 20.
    M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 11 (1998)Google Scholar
  21. 21.
    Th. Frauenheim, G. Seifert, M. Elstner, Z. Hainal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, Phys. Stat. Sol. B 217, 1 (2000)ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    R.S. Mulliken, J. Chem. Phys. 23, 10 (1955)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    CP2K Developers Group (2000–2007), http://cp2k.berlios.de
  26. 26.
    J. VandeVondele, M. Krack, F. Mohammed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 167, 103 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    J. VandeVondele, J. Hutter, J. Chem. Phys. 127, 114105 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S.R. Bahn, K.W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002)CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 18 (1996)CrossRefGoogle Scholar
  32. 32.
    U. Lammers, G. Borstel, Phys. Rev. B 49, 24 (1994)CrossRefGoogle Scholar
  33. 33.
    M. Menon, J. Connolly, N. Lathiotakis, A. Andriotis, Phys. Rev. B 50, 12 (1994)CrossRefGoogle Scholar
  34. 34.
    G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci. 36, 354 (2006)CrossRefGoogle Scholar
  35. 35.
    E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28, 5 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ville Mäkinen
    • 1
  • Pekka Koskinen
    • 1
  • Hannu Häkkinen
    • 1
    • 2
  1. 1.NanoScience Center, Department of Physics, University of JyväskyläJyväskyläFinland
  2. 2.NanoScience Center, Department of Chemistry, University of JyväskyläJyväskyläFinland

Personalised recommendations