Density functional theory molecular dynamics study of the Au25(SR) 18 cluster

  • V. MäkinenEmail author
  • H. Häkkinen
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters


The experimental structure of the Au25(SR) 18 cluster has been previously accurately determined. However, it’s thermodynamical behaviour is not well studied. We performed molecular dynamics simulations of 10 ps duration on the model cluster Au25(SH) 18 to gain information about the thermodynamical behaviour and stability of the cluster at temperatures between 300 K and 600 K. Our results suggest that the gold-sulfur bonds at the core-thiolate interface are the weakest ones in the system. However, the interface remains well defined during the simulations. The most significant structural changes take place in the gold core, where the ground state gold-gold bond length profile is completely changed by the thermal vibrations. The thermal movement does not affect the electronic structure notably. The HOMO and LUMO states broaden and the HOMO-LUMO gap narrows as a function of temperature, but the superatom electronic structure can be seen at all the temperatures clearly.


Bond Length Sulfur Atom Gold Atom Average Bond Length Ground State Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Häkkinen, Nat. Chem. 4, 443 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Häkkinen, Chem. Soc. Rev. 37, 1847 (2008)CrossRefGoogle Scholar
  3. 3.
    J.F. Parker, C.A. Fields-Zinna, R.W. Murray, Acc. Chem. Res. 43, 1289 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Retnakumari, S. Setua, D. Menon, P. Ravindran, H. Muhammed, T. Pradeep, S. Nair, M. Koyakutty, Nanotechnology 21, 055103 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhu, H.F. Qian, B.A. Drake, R.C. Jin, Angew. Chem. 49, 1295 (2010)CrossRefGoogle Scholar
  6. 6.
    M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W. Murray, J. Am. Chem. Soc. 130, 3754 (2008)CrossRefGoogle Scholar
  7. 7.
    M.Z. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R.C. Jin, J. Am. Chem. Soc. 130, 5883 (2008)CrossRefGoogle Scholar
  8. 8.
    M.Z. Zhu, W.T. Eckenhoff, T. Pintauer, R.C. Jin, J. Phys. Chem. C 112, 14221 (2008)CrossRefGoogle Scholar
  9. 9.
    H.F. Qian, W.T. Eckenhoff, Y. Zhu, T. Pintauer, R.C. Jin, J. Am. Chem. Soc. 132, 8280 (2010)CrossRefGoogle Scholar
  10. 10.
    P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318, 430 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Grönbeck, J. Am. Chem. Soc. 130, 3756 (2008)CrossRefGoogle Scholar
  12. 12.
    C.M. Aikens, J. Phys. Chem. A 113, 10811 (2009)CrossRefGoogle Scholar
  13. 13.
    O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen, C.M. Aikens, J. Am. Chem. Soc. 132, 8210 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 105, 9157 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen, J. Phys. Chem. C 113, 5035 (2009)CrossRefGoogle Scholar
  16. 16.
    M.Z. Zhu, H.F. Qian, R.C. Jin, J. Am. Chem. Soc. 131, 7220 (2009)CrossRefGoogle Scholar
  17. 17.
    H.F. Qian, Y. Zhu, R.C. Jin, J. Am. Chem. Soc. 132, 4583 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Dass, J. Am. Chem. Soc. 131, 11666 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Dass, J. Am. Chem. Soc. 133, 19259 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Negishi, Y. Tagasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, J. Am. Chem. Soc. 126, 6518 (2004)CrossRefGoogle Scholar
  21. 21.
    S.R. Bahn, K.W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002)CrossRefGoogle Scholar
  22. 22.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    A.H. Larsen, M. Vanin, J.J. Mortensen, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 80, 195112 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    M.A. MacDonald, D.M. Chevrier, P. Zhang, H.F. Qian, R.C. Jin, J. Phys. Chem. C 115, 15282 (2011)CrossRefGoogle Scholar
  28. 28.
    W.D. Knight, K. Clemenger, W. De Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    W. De Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.NanoScience Center, Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.NanoScience Center, Department of ChemistryUniversity of JyväskyläJyväskyläFinland

Personalised recommendations