Advertisement

Effect of hydrogen and cluster morphology on the electronic behavior of Ni-Nb-Zr-H glassy alloys with subnanometer-sized icosahedral Zr5Ni5Nb5 clusters

  • Mikio FukuharaEmail author
  • Hajime Yoshida
  • Hiroshi Kawarada
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The effects of hydrogen content and cluster morphology on the electronic transport behavior of (Ni0.36Nb0.24Zr0.40)100−x H x (0 < x < 20) glassy alloys containing distorted nanostructural icosahedral Zr5Nb5Ni3 clusters have been studied. When the hydrogen content is less than 7 at%, the hydrogen atom is localized between Ni atoms of neighboring distorted icosahedral Zr5Ni5Nb3 clusters. The I d -V g -B characteristics of the (Ni0.36Nb0.4Zr0.40)90H10 glassy alloy field-effect transistor (GAFET) showed room-temperature three-dimensional Coulomb oscillation and the Fano effect, which arises from interference of electrons traveling through two different cluster configurations, namely a localized discrete state inside the quantum dot and a continuum in the arm.

Keywords

Hydrogen Content Gold Wire Glassy Alloy Electronic Behavior Positron Annihilation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Yano, T. Ishi, T. Hashimoto, T. Kobayashi, F. Murai, IEEE Trans. Electron Devices 41, 1628 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    H. Ishikuro, T. Fujii, T. Saraya, G. Hashiguchi, T. Hiramoto, T. Ikoma, Appl. Phys. Lett. 68, 3585 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    L. Guo, E. Leobandung, S.Y. Chou, Science 275, 649 (1997)CrossRefGoogle Scholar
  4. 4.
    S.J. Tans, A.R.M. Verschueren, C. Decker, Nature 393, 49 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293, 76 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 88, 256806 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Fukuhara, H. Yoshida, K. Koyama, A. Inoue, Y. Miura, J. Appl. Phys. 107, 033703 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Fukuhara, A. Kawashima, S. Yamaura, A. Inoue, Appl. Phys. Lett. 90, 203111 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M. Fukuhara, A. Inoue, J. Appl. Phys. 105, 063715 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Fukuhara, N. Fujima, H. Oji, A. Inoue, S. Emura, J. Alloys Compd. 497, 182 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Fukuhara, Y. Umemori, Int. J. Mol. Sci. 13, 180 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Kresse, J. Furthnüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  14. 14.
    P.E. Blöch, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    H. Niki, H. Okuda, M. Oshiro, M. Yogi, I. Seki, M. Fukuhara, J. Appl. Phys. 111, 124308 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Fukuhara, Appl. Phys. Lett. 100, 093102 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Fukuhara, M. Seto, A. Inoue, Appl. Phys. Lett. 96, 043103 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M. Fukuhara, A. Inoue, Appl. Phys. Lett. 97, 243108 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Fukuhara, H. Yoshida, N. Fujima, H. Kawarada, J. Nanosci. Nanotechnol. 12, 3848 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mikio Fukuhara
    • 1
    • 2
    Email author
  • Hajime Yoshida
    • 1
    • 2
  • Hiroshi Kawarada
    • 3
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.Research Institute for Electromagnetic MaterialsSendaiJapan
  3. 3.Institute for Nanoscience and NanotechnologyWaseda UniversityTokyoJapan

Personalised recommendations