Advertisement

UV-visible absorption spectra of metallic clusters from TDDFT calculations

  • Franck RabilloudEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Absorption spectra of both pure silver or nickel clusters (Ag n ,n = 6−55, Ni p ,p = 8−12) and mixed silver-nickel clusters (Ag n Ni n ,n = 3−6) are investigated in the framework of the time-dependent density functional theory (TDDFT) with the use of the functional CAM-B3LYP. The spectra of silver nickel clusters are compared to those of pure silver and nickel clusters. An interpretation of spectroscopic patterns in terms of contribution from s- and d-type excitations is presented. In particular the d electrons of nickel atoms are found to play a crucial role in the optical transitions in Ni-rich systems.

Keywords

Calculated Spectrum Nickel Atom Collective Excitation Silver Cluster Surface Plasmon Resonance Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Gaudry, J. Lermé, E. Cottancin, M. Pellarin, J.L. Vialle, M. Broyer, B. Prével, M. Treilleux, P. Mélinon, Phys. Rev. B 64, 085407 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    O.M. Bakr, V. Amendola, C.M. Aikens, W. Wenseleers, R. Li, L. Dal Negro, G.C. Schatz, F. Stellacci, Angew. Chem. Int. Ed. 48, 5921 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, C. Félix, J. Chem. Phys. 129, 194108 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    C.M. Ritchie, K.R. Johnsen, J.R. Kiser, Y. Antoku, R.M. Dickson, J.T. Petty, J. Phys. Chem. C 111, 175 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M. Harb, F. Rabilloud, D. Simon, Phys. Chem. Chem. Phys. 12, 4246 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Tiggesbaumker, L. Koller, H.O. Lutz, K.H. Meiwes-Broer, Chem. Phys. Lett. 190, 42 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    J. Tiggesbaumker, L. Koller, H.O. Lutz, K.H. Meiwes-Broer, A. Liebsch, Phys. Rev. A 48, R1749 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    S. Fedrigo, W. Harbich, J. Belyaev, J. Buttet, Chem. Phys. Lett. 211, 166 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lecoultre, A. Rydlo, C. Félix, J. Buttet, S. Gilb, W. Harbich, J. Chem. Phys. 134, 074302 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    E. Loginov, L.F. Gomez, N. Chiang, A. Halder, N. Guggemos, V.V. Kresin, A.F. Vilesov, Phys. Rev. Lett. 106, 233401 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    V. Bonacic-Koutecky, J. Pittner, M. Boiron, P. Fantucci, J. Chem. Phys. 110, 3876 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    V. Bonacic-Koutecky, V. Veyret, R. Mitric, J. Chem. Phys. 115, 10450 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M. Harb, F. Rabilloud, D. Simon, Chem. Phys. Lett. 449, 38 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    M. Harb, F. Rabilloud, D. Simon, Chem. Phys. Lett. 476, 186 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    K. Baishya, J.C. Idrobo, S. Ogut, M. Yang, K. Jackson, J. Jellinek, Phys. Rev. B 78, 075439 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Harb, F. Rabilloud, D. Simon, J. Chem. Phys. 131, 174302 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    N. Durante, A. Fortunelli, M. Broyer, M. Stener, J. Phys. Chem. C 115, 6277 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Barcaro, M. Broyer, N. Durante, A. Fortunelli, M. Stener, J. Phys. Chem. C 115, 24085 (2011)CrossRefGoogle Scholar
  22. 22.
    H.C. Weissker, C. Mottet, Phys. Rev. B 84, 165443 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Harb, F. Rabilloud, D. Simon, J. Phys. B: At. Mol. Opt. Phys. 44, 035101 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    J. Lermé, Eur. Phys. J. D 10, 265 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J.R. Huntzinger, J.L. Vialle, M. Broyer, Theor. Chem. Acc. 116, 514 (2006)CrossRefGoogle Scholar
  26. 26.
    M.J. Frisch et al., Gaussian 09, Revision A.1 (Gaussian Inc., Wallingford, CT, 2009)Google Scholar
  27. 27.
    D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)CrossRefGoogle Scholar
  28. 28.
    M. Harb, F. Rabilloud, D. Simon, J. Phys. Chem. A 111, 7726 (2007)CrossRefGoogle Scholar
  29. 29.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    F. Rabilloud, Recent Res. Devel. Chem. Phys. 6, 67 (2012)Google Scholar
  33. 33.
    A.R. Allouche, J. Comput. Chem. 32, 174 (2011)CrossRefGoogle Scholar
  34. 34.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    C.M. Aikens, S. Li, G.C. Schatz, J. Phys. Chem. C 112, 11272 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne CedexFrance

Personalised recommendations