Optical study of a diffuse bipolar nanosecond pulsed dielectric barrier discharge with different dielectric thicknesses in air

  • Z.J. Liu
  • W.C. Wang
  • S. Zhang
  • D.Z. Yang
  • L. Jia
  • L.Y. Dai
Regular Article

Abstract

In this paper, a bipolar nanosecond high-voltage pulse power supply with about 20 ns rising time is employed to generate a diffuse dielectric barrier discharge using dielectric plates of different thicknesses. Dielectric thickness, which is regarded as an important discharge parameter, can improve diffuse discharge characteristics. Both the images of the diffuse dielectric barrier discharge and the optical emission spectra with different dielectric thicknesses are recorded successfully under severe electromagnetic interference. The effects of the discharge gap distance, pulse peak voltage, and pulse repetition rate on the emission intensity of N2 (C3Πu → B3Πg) of nanosecond pulsed dielectric barrier discharge with different dielectric thicknesses were investigated. It was found that increasing dielectric thickness is not conducive to acquiring a larger area of diffuse discharge. Also, the intensity of discharge decays and the discharge volume constricts in a horizontal direction with increasing dielectric thickness. The experimental result also shows that the emission intensity of N2 (C3Πu → B3Πg) decreases with the increase of the dielectric thickness and the discharge gap distance, but rises with both increasing both pulse peak voltage and pulse repetition rate.

Keywords

Plasma Physics 

References

  1. 1.
    R. Ono, T. Oda, IEEE Trans. Ind. Appl. 37, 709 (2001)CrossRefGoogle Scholar
  2. 2.
    B. Sun, M. Sato, J.S. Clements, J. Electrost. 39, 189 (1997)CrossRefGoogle Scholar
  3. 3.
    Y. Sawada, S. Ogawa, M. Kogoma, J. Phys. D 28, 16 (1995)Google Scholar
  4. 4.
    R.P. Mildren, R.J. Carman, I.S. Falconer, IEEE Trans. Plasma Sci. 30, 192 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Mahoney, W. Zhu, V.S. Johnson, K.H. Becker, J.L. Lopez, Eur. Phys. J. D 60, 441 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    F. Massines, G. Gouda, J. Phys. D 31, 3411 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    D.X. Nie, W.C. Wang, D.Z. Yang, Spectrochim. Acta Part A 79, 1896 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    F. Liu, W. Wang, W. Zheng, Y. Wang, Eur. Phys. J. D 42, 435 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    K.L. Wang, W.C. Wang, D.Z. Yang, Y. Huo, D.Z. Wang, Appl. Surf. Sci. 256, 6859 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D 36, 39 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A. Mizuno, J.S. Clements, R.H. Davis, IEEE Trans. Ind. Appl. 22, 516 (1986)CrossRefGoogle Scholar
  12. 12.
    X. Duten, D. Packan, L. Yu, C.O. Laux, C.H. Kruger, IEEE Trans. Plasma Sci. 30, 178 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Williamson, D.D. Trump, P. Bletzinger, B.N. Ganguly, J. Phys. D 20, 4400 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    K. Takaki, M. Hosokawa, T. Sasaki, S. Mukaigawa, T. Fujiwara, Appl. Phys. Lett. 86, 151 (2005)Google Scholar
  15. 15.
    H. Ayan, G. Fridman, A.F. Gutsol, IEEE Trans. Plasma Sci. 36, 504 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    H. Ayan, D. Staack, G. Fridman, J. Phys. D 42, 125202 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T. Shao, P. Yan, K. Long, S. Zhang, IEEE Trans. Plasma Sci. 36, 1358 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T. Shao, K. Long, C. Zhang, P. Yan, S. Zhang, R. Pan, J. Phys. D 41, 215203 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    D.Z. Yang, W.C. Wang, S.Z. Li, Y. Song, D.X. Nie, J. Phys. D 43, 455202 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    D.Z. Yang, W.C. Wang, L. Jia, D.X. Nie, H.C. Shi, J. Appl. Phys. 109, 073308 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    L. Mangolini, C. Anderson, J. Heberlein, J. Phys. D 37, 1021 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    T. Shao, K. Long, C. Zhang, J. Wang, D. Zhang, P. Yan, S. Zhang, J. Electrostat. 67, 215 (2009)CrossRefGoogle Scholar
  23. 23.
    Y. Luo, Z. Fang, H. Wang, High Voltage Apparatus 40, 81 (2004)Google Scholar
  24. 24.
    Y. Yang, G.J. Zhang, G.Q. Yang, Y.B. Zhang, W.Y. Zhang, High Voltage Engineering 33, 37 (2007)Google Scholar
  25. 25.
    M. Li, C.R. Li, H.M. Zhan, J.B. Xu, X.X. Wang, Appl. Phys. Lett. 92, 031503 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.I. Levatter, S.C. Lin, J. Phys. D 51, 210 (1980)Google Scholar
  27. 27.
    Y. Yang, W.C. Wang, D.Z. Yang, L. Jia, S. Zhang, J. Electrostat. 70, 356 (2012)CrossRefGoogle Scholar
  28. 28.
    F. Liu, G. Huang, B. Ganguly, Plasma Source Sci. Technol. 19, 045017 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Plasma Source Sci. Technol. 1, 207 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    O. Eichwald, M. Yousfi, A. Hennad, M.D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    V. Guerra, P.A. Sa, J. Loureiro, J. Phys. D 34, 1745 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    S.Q. Luo, C.M. Denning, J.E. Scharer, J. Appl. Phys. 104, 013301 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J. Lugue, D.R. Crosley, Lifbase: Database and Spectral Simulation Program (Version 1.6), SRI International Report MP 99-009, 1999Google Scholar
  34. 34.
    C.O. Laux, T.G. Spencer, C.H. Kruger, R.N. Zare, Plasma Source Sci. Technol. 12, 125 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    L. Yu, L. Pierrot, C.O. Laux, C.H. Kruger, Plasma Chem. Plasma Process. 21, 483 (2001)CrossRefGoogle Scholar
  36. 36.
    Y.P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, Heidelberg, 1991)Google Scholar
  37. 37.
    Y.C. Hong, H.S. Uhm, Phys. Plasmas 14, 053503 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    D.Z. Yang, Y. Yang, S.Z. Li, D.X. Nie, S. Zhang, W.C. Wang, Plasma Source Sci. Technol. 21, 035004 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Z.J. Liu
    • 1
  • W.C. Wang
    • 1
  • S. Zhang
    • 1
  • D.Z. Yang
    • 1
  • L. Jia
    • 1
  • L.Y. Dai
    • 2
  1. 1.Key Lab of Materials Modification (Dalian University of Technology)DalianP.R. China
  2. 2.Marine Engineering Institute, Jimei UniversityXiamenP.R. China

Personalised recommendations