Advertisement

Density functional study of geometrical, electronic and magnetic properties of Wn clusters (n = 2–16, 19, 23)

  • Samanta M. Carrión
  • Reinaldo Pis-DiezEmail author
  • Faustino Aguilera-Granja
Regular Article

Abstract

Geometrical, electronic and magnetic properties of W n atomic clusters, with n = 1–16, 19, 23, are explored using different generalized gradient approximations to the density functional theory and basis sets of double-ζ quality augmented with polarization functions. From a geometrical point of view, tungsten aggregates with n = 15 and above exhibit a clear tendency to adopt structures derived from the body-centered cubic system. Total energy second-differences indicate that tungsten octamer becomes a specially stable isomer. For larger sizes, the different generalized gradient approximations do not predict the same stability pattern. Vertical ionization energies show a smooth, but slow trend to the experimental work function of polycrystalline tungsten. Vertical electron affinities agree very well with experimental measures of detachment electron energies. Calculated magnetic moments indicate that mainly singlet, triplet and quintet electronic states characterize small tungsten aggregates. A W15 isomer with a geometry derived from the body-centered cubic system, however, is characterized by an electronic state with 14 unpaired electrons.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    C.H. Kline, V. Kollonitsch, Ind. Eng. Chem. 57, 53 (1965) Google Scholar
  2. 2.
    Theory of Atomic and Molecular Clusters, edited by J. Jellinek (Springer, Berlin, 1999) Google Scholar
  3. 3.
    R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002) Google Scholar
  4. 4.
    S.A. Mitchell, D.M. Rayner, T. Bartlett, P.A. Hackett, J. Chem. Phys. 104, 4012 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    L. Holmgren, M. Andersson, A. Rosén, J. Chem. Phys. 109, 3232 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    Y.D. Kim, D. Stolcic, M. Fischer, G. Ganteför, J. Chem. Phys. 119, 10307 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    Z.J. Wu, Chem. Phys. Lett. 370, 510 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    X.R. Zhang, X.L. Ding, B. Dai, J.L. Yang, J. Mol. Struct.: THEOCHEM 757, 113 (2005) CrossRefGoogle Scholar
  9. 9.
    W. Yamaguchi, J. Murakami, Chem. Phys. 316, 45 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    J. Du, X. Sun, D. Meng, P. Zhang, G. Jiang, J. Chem. Phys. 131, 044313 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, 1989) Google Scholar
  14. 14.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejon, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  17. 17.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
  19. 19.
    C.F. Guerra, J.G. Snijders, G. Te Velde, E.J. Baerends, Theor. Chem. Acc. 99, 391 (1998) Google Scholar
  20. 20.
    G. Te Velde, F.M. Bickelhaupt, S.J.A. Van Gisbergen, C.F. Guerra, E.J. Baerends, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931 (2001) CrossRefGoogle Scholar
  21. 21.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) ADSCrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993) ADSCrossRefGoogle Scholar
  24. 24.
    E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 101, 9783 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    E. van Lenthe, A.E. Ehlers, E.J. Baerends, J. Chem. Phys. 110, 8943 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    C. Angeli, A. Cavallini, R. Cimiraglia, J. Chem. Phys. 127, 074306 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    H. Weidele, D. Kreisle, E. Recknagel, G.S. Icking-Konert, H. Handschuh, G. Ganteför, W. Eberhardt, Chem. Phys. Lett. 237, 425 (1995) ADSCrossRefGoogle Scholar
  29. 29.
    H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Samanta M. Carrión
    • 1
  • Reinaldo Pis-Diez
    • 1
    Email author
  • Faustino Aguilera-Granja
    • 2
  1. 1.CEQUINOR, Centro de Química Inorgánica (CONICET, UNLP), Departamento de Química, Facultad de Ciencias ExactasLa PlataArgentina
  2. 2.Instituto de Física “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis PotosíS.L.P.México

Personalised recommendations