Advertisement

Laser-driven shock propagation into quartz targets driven by various drive pulse configurations: experiments

  • H. ShuEmail author
  • S. Z. Fu
  • X. G. Huang
  • Z. H. Fang
  • T. Wang
  • J. J. Ye
  • Z. Y. Xie
  • H. Z. Zhou
  • T. Long
Regular Article

Abstract

Both direct-drive and indirect-drive inertial confinement fusion targets use temporally shaped drive pulses to optimize the target performance. The timing of multiple shock waves is crucial to the performance of inertial confinement fusion ignition targets. This paper reports an experimental study on the shock wave characteristics of laser-irradiated targets. The shock wave velocity profiles are measured using the velocity interferometer system for any reflector (VISAR). Presented are measurements of velocities from shock waves in quartz targets driven by single 120 ps pulse, two 120 ps pulses separated by 1.1 ns and a special shaped pulse. These pulses drive two shock waves that coalesce in the target, and the coalescence times and transit times are observed by VISAR.

Keywords

Plasma Physics 

References

  1. 1.
    J.D. Lindl, Phys. Plasmas 2, 3933 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    S.E. Bodner et al., Phys. Plasmas 5, 1901 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Kilkenny, S.G. Glendinning, S.W. Haan, B.A. Hammel, J.D. Lindl, D. Munro, B.A. Remington, S.V. Weber, J.P. Knauer, C.P. Verdon, Phys. Plasmas 1, 1379 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    T.R. Boehly, E. Vianello, J.E. Miller, R.S. Craxton, T.J.B. Collins, V.N. Goncharov, I.V. Igumenshchev, D.D. Meyerhofer, D.G. Hicks, P.M. Celliers, G.W. Collins, Phys. Plasmas 13, 056303 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    T.R. Boehly, D. Munro, P.M. Celliers, R.E. Olson, D.G. Hicks, V.N. Goncharov, G.W. Collins, H.F. Robey, S.X. Hu, J.A. Morozas, T.C. Sangster, O.L. Landen, D.D. Meyerhofer, Phys. Plasmas 16, 056302 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    H.F. Robey, T.R. Boehly, R.E. Olson, A. Nikroo, P.M. Celliers, O.L. Landen, D.D. Meyerhofer, Phys. Plasmas 17, 012703 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    T.R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T.R. Boehly et al., Phys. Plasmas 18, 092706 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    H.F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Barker, R.E. Hollenbach, Rev. Sci. Instrum. 36, 1617 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    P.M. Cellier, D.K. Bradley, G.W. Collins, D.G. Hicks, T.R. Boehly, W.J. Armstrong, Rev. Sci. Instrum. 75, 4916 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    H. Shu, S.-Z. Fu, X.-G. Huang, G. Jia, J.-Q. Dong, J.-J. Ye, Y. Gu, Chin. J. Lasers 37, 176 (2010)CrossRefGoogle Scholar
  13. 13.
    X.M. Deng, X. Liang, Z. Chen, W. Yu, R. Ma, Appl. Opt. 25, 37 (1986)CrossRefGoogle Scholar
  14. 14.
    H. Shu, S.-Z. Fu, X.-G. Huang, M.-X. Ma, J. Wu, J.-J. Ye, J.-H. He, Y. Gu, Eur. Phys. J. D 44, 367 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    H. Shu, S.Z. Fu, X.G. Huang, M.X. Ma, J. Wu, J.J. Ye, J.H. He, Y. Gu, P.Q. Luo, T. Long, J. Appl. Phys. 103, 093304 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    D.X. Lai et al., in Proceedings of the International Conference on Computational Physics, Beijing, 1988, edited by L. Denyuan, D. Feng (World Scientific, Singapore, 1989), p. 156Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • H. Shu
    • 1
    Email author
  • S. Z. Fu
    • 1
  • X. G. Huang
    • 1
  • Z. H. Fang
    • 1
  • T. Wang
    • 1
  • J. J. Ye
    • 1
  • Z. Y. Xie
    • 1
  • H. Z. Zhou
    • 1
  • T. Long
    • 2
  1. 1.Shanghai Institute of Laser PlasmaShanghaiP.R. China
  2. 2.Beijing Institute of Applied Physics and Computational MathematicsBeijingP.R. China

Personalised recommendations