Advertisement

Effect of thermal noise on atom-field interaction: Glauber-Lachs versus mixing

  • S. SivakumarEmail author
Regular Article

Abstract

Coherent signal incorporating thermal noise is a mixed state of radiation. There are two distinct classes of such states, a Gaussian state obtained by Glauber-Lachs mixing and a non-Gaussian state obtained by the canonical probabilistic mixing of thermal state and coherent state. Though both these versions are noise-included signal states, the effect of noise is less pronounced in the Glauber-Lachs version. Effects of these two distinct ways of noise addition is considered in the context of atom-field interaction; in particular, temporal evolution of population inversion and atom-field entanglement are studied. Quantum features like the collapse-revivals in the dynamics of population inversion and entanglement are diminished by the presence of thermal noise. It is shown that the features lost due to the presence of thermal noise are restored by the process of photon-addition.

Keywords

Quantum Optics 

References

  1. 1.
    C.C. Gerry, P.L. Kinght, Introductory Quantum Optics (Cambridge University Press, New York, 2005)Google Scholar
  2. 2.
    R.J. Glauber, in Physics of Quantum Electronics, Conference Proceedings, edited by P.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill Book Co., New York, 1966)Google Scholar
  3. 3.
    G. Lachs, Phys. Rev. B 138, 1012 (1965) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    C.M. Caves, P.B. Drummond, Rev. Mod. Phys. 66, 481 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    C. Valverde, B. Baseia, Int. J. Quant. Inf. 2, 421 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  7. 7.
    L. Mista Jr., R. Filip, J. Fiurasek, Phys. Rev. A 65, 062315 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M.G. Genoni, M.G.A. Paris, Phys. Rev. A 82, 052341 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    W. Vogel, D.G. Welsch, S. Wallentowitz, Quantum Optics An Introduction (Wiley-VCH, Berlin, 2001)Google Scholar
  10. 10.
    C.T. Lee, Phys. Rev. A 44, R2775 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integral, Series and Products (Academic Press, 2000)Google Scholar
  13. 13.
    A. Zavatta, S. Viciani, M. Bellini, Science 306, 660 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    W.H. Louisell, Quantum Statistical Properties of Radiation (John-Wiley, New York, 1973)Google Scholar
  15. 15.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89109 (1963)CrossRefGoogle Scholar
  16. 16.
    S.M. Barnett, P.M. Radmore, Methods of Theoretical Quantum Optics (Springer, New York, 1997)Google Scholar
  17. 17.
    T.C. Wei et al., Phys. Rev. A 67, 022110 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    X.W. Hou, B. Hu, Phys. Rev. A 69, 042110 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    H. Kayhan, Phys. Scr. 83, 025402 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    F.W. Cummings, Phys. Rev. 140, A1051 (1965) ADSCrossRefGoogle Scholar
  21. 21.
    J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    M.V. Satyanarayana, M. Vijayakumar, Phys. Rev. A 45, 5301 (1992) ADSCrossRefGoogle Scholar
  24. 24.
    G.N. Jones, J. Haight, C.T. Lee, Quantum Semiclass. Opt. 9, 411 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    T. Kiesel, W. Vogel, M. Bellini, A. Zavatta, Phys. Rev. A 83, 032116 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    A.R. Usha Devi, R. Prabhu, M.S. Uma, Eur. Phys. J. D 40, 133 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    C.T. Lee, Phys. Rev. A 52, 3374 (1995) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Materials Physics Division, Indira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations