Advertisement

Continuous dynamical protection of coherent evolutions of two distant atoms against atomic decay

  • Dong Xue
  • Jian ZouEmail author
  • Bin Shao
Regular Article

Abstract

For two (two-level) atoms placed in distant cavities, which are connected by optical fibers, by using a few local continuous fields with frequencies sufficiently large as compared with the cutoff frequency of the environment, we can achieve low-order protection of non-local unitary evolutions and two classes of local unitary evolutions against atomic decay. Using these protected evolutions, we can prepare and protect an arbitrary state of two atoms in the presence of atomic decay. More importantly, we show that the universal gate operation can also be realized by combination of these evolutions against atomic decay.

Keywords

Quantum Information 

References

  1. 1.
    P.W. Shor, Phys. Rev. A 52, R2493 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Ekert, C. Macchiavello, Phys. Rev. Lett. 77, 2585 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    L.-M. Duan, G.-C. Guo, Phys. Rev. A 57, 737 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Lidar, I.L. Chuang, K.B. Whaley, Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bacon, J. Kempe, D.A. Lidar, K.B. Whaley, Phys. Rev. Lett. 85, 1758 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 77, 4728 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    F.O. Prado, E.I. Duzzioni, M.H.Y. Moussa, N.G. de Almeida, C.J. Villas-Bôas, Phys. Rev. Lett. 102, 073008 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    F.O. Prado, N.G. de Almeida, E.I. Duzzioni, M.H.Y. Moussa, N.G. de Almeida, C.J. Villas-Bôas, Phys. Rev. A 84, 012112 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    L. Viola, S. Lloyd, Phys. Rev. Lett. 58, 2733 (1998)ADSMathSciNetGoogle Scholar
  12. 12.
    L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    L.A. Wu, D.A. Lidar, Phys. Rev. Lett. 88, 207902 (2002)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    G.S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K.M. Fonseca-Romero, S. Kohler, P. Hänggi, Phys. Rev. Lett. 95, 140502 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    P. Chen, Phys. Rev. A 73, 22343 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    F.F. Fanchini, J.E.M. Hornos, R.D.J. Napolitano, Phys. Rev. A 75, 022329 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    F.F. Fanchini, J.E.M. Hornos, R.D.J. Napolitano, Phys. Rev. A 76, 032319 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    F.F. Fanchini, R.D.J. Napolitano, Phys. Rev. A 76, 062306 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    F.F. Fanchini, R.D.J. Napolitano, arXiv:1005.1666Google Scholar
  21. 21.
    A.Z. Chaudhry, J. Gong, Phys. Rev. A 85, 012315 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. van Enk, H.J. Kimble, J.I. Cirac, P. Zoller, Phys. Rev. A 59, 2659 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    A.S. Parkins, H.J. Kimle, Phys. Rev. A 61, 052104 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    S. Mancini, S. Bose, Phys. Rev. A 64, 032308 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    C. Simon, W.T. Irvine, Phys. Rev. Lett. 91, 110405 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    S. Clark, A. Peng, M. Gu, S. Parkins, Phys. Rev. Lett. 91, 177901 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    D.E. Browne, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 91, 067901 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mancini, S. Bose, Phys. Rev. A 70, 022307 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    C.H. Yuan, K.D. Zhu, J. Phys. B: At. Mol. Opt. Phys. 40, 801 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    D. Xue, J. Zou, J.-G. Li, W.-Y. Chen, B. Shao, J. Phys. B: At. Mol. Opt. Phys. 43, 045503 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S. Mancini, J. Wang, Eur. Phys. J. D 32, 257 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    H.M. Wiseman, G.J. Milburn, Quantum measurement and control (Cambridge University Press, Cambridge, 2009)Google Scholar
  34. 34.
    P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, D.A. Lidar, Phys. Rev. A 71, 022302 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    A.G. Kofman, G. Kurizki, Phys. Rev. Lett. 93, 130406 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    A. Kuhn, M. Hennrich, G. Rempe, Phys. Rev. Lett. 89, 067901 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Biercuk et al., Nature 458, 996 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    M.J. Biercuk et al., Phys. Rev. A 79, 062324 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M. Kasevich et al., Phys. Rev. Lett. 66, 2297 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    M.J. Holland et al., Phys. Rev. Lett. 67, 1716 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics, Beijing Institute of TechnologyBeijingP.R. China

Personalised recommendations