Advertisement

An analytically solvable three-body break-up model problem in hyperspherical coordinates

  • L. U. AncaraniEmail author
  • G. Gasaneo
  • D. M. Mitnik
Regular Article

Abstract

An analytically solvable S-wave model for three particles break-up processes is presented. The scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordinates leading to an analytic expression for the associated scattering transition amplitude. The proposed scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g., non-separability in the electrons’ spherical coordinates and Coulombic asymptotic behavior. Since the coordinates’ coupling is completely different, the model provides an alternative test to that given by the Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyperspherical Sturmian approach recently developed for three-body collisional problems is used to reproduce to high accuracy the analytical results. In addition to this, we generalized the model generating an approximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and to analyze how far one has to go to extract the transition amplitude.

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    I. Bray, A.T. Stelbovics, Phys. Rev. A 46, 6995 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    A.D. Alhaidari, E.J. Heller, H.A. Yamani, M.S. Abdelmonem, The J-Matrix Method, Development and Applications (Springer, Berlin, 2008)Google Scholar
  3. 3.
    C.W. McCurdy, M. Baertschy, T.N. Rescigno, J. Phys. B: At. Mol. Opt. Phys. 37, R137 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Serov, V.L. Derbov, B.B. Joulakian, S.I. Vinitsky, Phys. Rev. A 75, 012715 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    L.U. Ancarani, C. Dal Cappello, G. Gasaneo, J. Phys.: Conf. Ser. 212, 012025 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Mengoue, M.G. Kwato Njock, B. Piraux, Yu.V. Popov, S.A. Zaytsev, Phys. Rev. A 83, 052708 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    T.N. Rescigno, M. Baertschy, W.A. Isaacs, C.W. McCurdy, Science 286, 2474 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Temkin, Phys. Rev. 126, 130 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Poet, J. Phys. B 11, 3081 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    S. Jones, A.T. Stelbovics, Phys. Rev. Lett. 84, 1878 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    S. Jones, A.T. Stelbovics, Phys. Rev. A 66, 032717 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Pindzola, D. Mitnik, F. Robicheaux, Phys. Rev. A 59, 4390 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    C. Plottke, I. Bray, D.V. Fursa, A.T. Stelbovics, Phys. Rev. A 65, 032701 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    D.A. Horner, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 71, 012701 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P.L. Bartlett, A.T. Stelbovics, Phys. Rev. A 81, 022715 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P.L. Bartlett, A.T. Stelbovics, Phys. Rev. A 81, 022716 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Konovalov, D.V. Fursa, I. Bray, Phys. Rev. A 84, 032707 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    T.N. Rescigno, M. Baertschy, D. Byrum, C.W. McCurdy, Phys. Rev. A 55, 4253 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 62, 032706 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    R.G. Newton, Scattering Theory of Waves and Particles (Dover Publications, New York, 2002)Google Scholar
  21. 21.
    C.J. Joachain, Quantum Collision Theory (North-Holland Publishing Company, 1983)Google Scholar
  22. 22.
    M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    R.K. Peterkop, Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)Google Scholar
  24. 24.
    S.P. Merkuriev, L.D. Faddeev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic, Dordrecht, 1993)Google Scholar
  25. 25.
    G. Gasaneo, D.M. Mitnik, A.L. Frapiccini, F.D. Colavecchia, J.M. Randazzo, J. Phys. Chem. A 113, 14573 (2009)CrossRefGoogle Scholar
  26. 26.
    G. Gasaneo, L.U. Ancarani, J. Phys. A 45, 045304 (2012)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    V. Aquilanti, S. Cavalli, D. De Fazio, J. Chem. Phys. 109, 3792 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)Google Scholar
  29. 29.
    G. Gasaneo, L.U. Ancarani, Phys. Rev. A 82, 042706 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    L.U. Ancarani, G. Gasaneo, J. Math. Phys. 49, 063508 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    L.U. Ancarani, G. Gasaneo, J. Math. Phys. 52, 022108 (2011)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    L.U. Ancarani, G. Gasaneo, J. At. Mol. Sci. 2, 203 (2011)Google Scholar
  33. 33.
    A.L. Frapiccini, J.M. Randazzo, G. Gasaneo, F.D. Colavecchia, J. Phys. B: At. Mol. Opt. Phys. 43, 101001 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A.L. Frapiccini, J.M. Randazzo, G. Gasaneo, F.D. Colavecchia, Int. J. Quant. Chem. 110, 963 (2010)ADSGoogle Scholar
  35. 35.
    J.M. Randazzo, L.U. Ancarani, G. Gasaneo, A.L. Frapiccini, F.D. Colavecchia, Phys. Rev. A 81, 042520 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A.L. Frapiccini, J.M. Randazzo, G. Gasaneo, F.D. Colavecchia, Phys. Rev. A 82, 042503 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    D.M. Mitnik, F.D. Colavecchia, G. Gasaneo, J.M. Randazzo, Comput. Phys. Commun. 182, 1145 (2011)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    J.M. Randazzo, F. Buezas, A.L. Frapiccini, F.D. Colavecchia, G. Gasaneo, Phys. Rev. A 84, 052715 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique Moléculaire et des Collisions, UMR CNRS 7565Université de LorraineMetzFrance
  2. 2.Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Instituto de Astronomía y Física del Espacio (IAFE), Consejo Nacional de Investigaciones Científicas y Técnicas and FCEyNUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations