Effect of the heralding detector properties on the conditional generation of single-photon states

  • V. D’Auria
  • O. Morin
  • C. Fabre
  • J. LauratEmail author
Regular Article


Single-photons play an important role in emerging quantum technologies and information processing. An efficient generation technique consists in preparing such states via a conditional measurement on photon-number correlated beams: the detection of a single-photon on one of the beam can herald the generation of a single-photon state on the other one. Such scheme strongly depends on the heralding detector properties, such as its quantum efficiency, noise or photon-number resolution ability. These parameters affect the preparation rate and the fidelity of the generated state. After reviewing the theoretical description of optical detectors and conditional measurements, and how both are here connected, we evaluate the effects of these properties and compare two kinds of devices, a conventional on/off detector and a two-channel detector with photon-number resolution ability.


Quantum Optics 


  1. 1.
    F. Dell’Anno, S. De Siena, F. Illuminati, Phys. Rep. 428, 53 (2006)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J.L. O’Brien, A. Furusawa, J. Vuckovic, Nat. Photon. 3, 687 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    B. Lounis, M. Orrit, Rep. Prog. Phys. 68, 1129 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    C.K. Hong, L. Mandel, Phys. Rev. Lett. 56, 58 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    J. Laurat et al., Opt. Express 14, 6913 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    A.I. Lvovsky et al., Phys. Rev. Lett. 87, 050402 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    S.R. Huisman et al., Opt. Lett. 34, 2739 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    O. Morin, V. D’Auria, C. Fabre, J. Laurat, Opt. Lett. 37, 3738 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    R.H. Hadfiled, Nat. Photon. 3, 696 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    V. D’Auria, N. Lee, T. Amri, C. Fabre, J. Laurat, Phys. Rev. Lett. 107, 050504 (2011)CrossRefGoogle Scholar
  11. 11.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)Google Scholar
  12. 12.
    A. Ferraro, S. Olivares, M.G.A. Paris, eprint arXiv:quant-ph/0503237Google Scholar
  13. 13.
    D. Achilles, S. Silberhorn, C. Sliwa, K. Banaszek, I. Walmsley, Opt. Lett. 28, 2387 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    D.T. Pegg, S.M. Barnett, J. Opt. B: Quantum Semiclass. Opt. 1, 442 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    S.M. Barnett, L.S. Phillips, D.T. Pegg, Opt. Commun. 158, 45 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    T. Amri, J. Laurat, C. Fabre, Phys. Rev. Lett. 106, 020502 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Luis, L.L. Soto, Phys. Rev. Lett. 83, 3573 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    J. Fiurasek, Phys. Rev. A 64, 024102 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J.S. Lundeen et al., Nat. Phys. 5, 27 (2008)CrossRefGoogle Scholar
  20. 20.
    H.B. Coldenstrodt-Ronge et al., J. Mod. Opt. 56, 432 (2009)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    G. Brida et al., New J. Phys. 14, 085001 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    G. Brida et al., Phys. Rev. Lett. 108, 253601 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    L. Zhang et al., Nat. Photon. 6, 364 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Fiurasek, Phys. Rev. A 66, 012304 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    H. Jeong, T.C. Ralph, W.P. Bowen, J. Opt. Soc. Am. B 24, 355 (2007)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Université de Nice-Sophia AntipolisNice Cedex 2France
  2. 2.Laboratoire Kastler Brossel, Université Pierre et Marie Curie, École Normale Supérieure, CNRSParis Cedex 05France

Personalised recommendations