Advertisement

Theoretical studies on level structures and transition properties of neptunium ions

  • W.D. Zhou
  • C.Z. DongEmail author
  • Q.M. Wang
  • X.L. Wang
  • I.A. Saber
Regular Article

Abstract

Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the ionization potentials, ionic radii, excitation energies and oscillator strengths for neptunium ions. In the calculations, main valence correlation effects, Breit interaction and QED effects were taken into account. The good consistency with other available theoretical values demonstrates the validity of the present calculations. These theoretical results therefore can be used to predict some physicochemical properties of Np and its oxides.

Keywords

Atomic Physics 

References

  1. 1.
    S. Heathman, R.G. Haire, T. Le Bihan, A. Lindbaum, M. Idiri, P. Normile, S. Li, R. Ahuja, B. Johansson, G.H. Lander, Science 309, 110 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    M. Dozol, R. Hagemann, Pure Appl. Chem. 65, 1081 (1993)CrossRefGoogle Scholar
  3. 3.
    J.P. Kaszuba, W.H. Runde, Environ. Sci. Technol. 33, 4427 (1999)CrossRefGoogle Scholar
  4. 4.
    Z.J. Cao, K. Balasubramanian, J. Chem. Phys. 123, 114309 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    K. Nilsson, L. Carlsen, The Migration Chemistry of Neptunuim (Risø National Laboratory, Denmark, 1989)Google Scholar
  6. 6.
    A. Seibert, T. Gouder, F. Huber, J. Nucl. Mater. 389, 470 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    T. Nishi, A. Itoh, M. Takano, M. Numata, M. Akabori, Y. Arai, K. Minato, J. Nucl. Mater. 376, 78 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    H. Serizawa, Y. Arai, K. Nakajima, J. Chem. Thermodyn. 33, 615 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, J. Nucl. Mater. 247, 90 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yun, J. Rusz, M.-T. Suzuki, P.M. Oppeneer, Phys. Rev. B 83, 075109 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    L. Petit, A. Svane, Z. Szotek, W.M. Temmerman, G.M. Stocks, Phys. Rev. B 81, 045108 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    B.T. Wang, H.L. Shi, W.D. Li, P. Zhang, Phys. Rev. B 81, 045119 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D.A. Andersson, J. Lezama, B.P. Uberuaga, C. Deo, S.D. Conradson, Phys. Rev. B 79, 024110 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    I.D. Prodan, G.E. Scuseria, R.L. Martin, Phys. Rev. B 76, 033101 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K. Kurosaki, M. Imamura, I. Sato, T. Namekawa, M. Uno, S. Yamanaka, J. Alloys Compd. 387, 9 (2005)CrossRefGoogle Scholar
  16. 16.
    K.T. Moore, G. van der Laan, R.G. Haire, M.A. Wall, A.J. Schwartz, Phys. Rev. B 73, 033109 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    R.C. Albers, Nature 410, 759 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    S.S. Hecker, Metall. Mater. Trans. A 35, 2207 (2004)CrossRefGoogle Scholar
  19. 19.
    H.L. Skrivers, O.K. Andersen, B. Johansson, Phys. Rev. Lett. 41, 42 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Tobin, K.T. Moore, B.W. Chung, M.A. Wall, A.J. Schwartz, G. van der Laan, A.L. Kutepov, Phys. Rev. B 72, 085109 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature 410, 793 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    L. Havela, T. Gouder, F. Wastin, J. Rebizant, Phys. Rev. B 65, 235118 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    K.T. Moore, G. van der Laan, Rev. Mod. Phys. 81, 235 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    I.P. Grant, Adv. Phys. 19, 747 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    I.P. Grant, J. Phys. B 7, 1458 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    P. Jönsson, X. He, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    S. Fritzsche, Eur. Phys. J. D 33, 15 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    J. Olsen, B.O. Roos, P. Jörgensen, H.J.Aa. Jensen, J. Chem. Phys. 89, 2185 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    L. Sturesson, P. Jönsson, C.F. Fischer, Comput. Phys. Commun. 177, 539 (2007)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Y. Zou, C.F. Fischer, Phys. Rev. Lett. 88, 183001 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    Y.J. Yu, J.G. Li, C.Z. Dong, X.B. Ding, S. Fritzsche, B. Fricke, Eur. Phys. J. D 44, 51 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    X.Y. Cao, M. Dolg, Mol. Phys. 101, 961 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    W.J. Liu, W. Kchüle, M. Dolg, Phys. Rev. A 58, 1103 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964)ADSCrossRefGoogle Scholar
  37. 37.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    M. Sewtz, H. Backe, C.Z. Dong, A. Dretzke, K. Eberhardt, S. Fritzsche, C. Grüning, R.G. Haire, G. Kube, P. Kunz, J. Lassen, W. Lauth, G. Passler, P. Schwamb, P. Thoerle, N. Trautmann, Spectrochim. Acta Part B 58, 1077 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    M. Sewtz, H. Backe, A. Dretzke, G. Kube, W. Lauth, P. Schwamb, K. Eberhardt, C. Grüning, P. Thörle, N. Trautmann, P. Kunz, J. Lassen, G. Passler, C.Z. Dong, S. Fritzsche, R.G. Haire, Phys. Rev. Lett. 90, 163002 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    K.L. Vander Sluis, L.J. Nugent, J. Opt. Soc. Am. 64, 687 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    L. Brewer, J. Opt. Soc. Am. 61, 1666 (1971)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • W.D. Zhou
    • 1
  • C.Z. Dong
    • 1
    Email author
  • Q.M. Wang
    • 1
  • X.L. Wang
    • 1
  • I.A. Saber
    • 1
  1. 1.Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal UniversityLanzhouP.R. China

Personalised recommendations