Appearance size of poly-anionic aluminum clusters, Alnz-, z = 2–5*

  • Franklin Martinez
  • Steffi Bandelow
  • Christian Breitenfeldt
  • Gerrit Marx
  • Lutz Schweikhard
  • Frank Wienholtz
  • Falk Ziegler
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The production of poly-anionic metal clusters by simultaneous storage of electrons and cluster anions in a Penning trap has been extended to the fifth charge state. The minimum cluster size, required to attach a fifth excess electron, has been experimentally determined for aluminum clusters. A refined data evaluation method is proposed, redefining the appearance size with respect to the delayed electron emission. It has been applied to the penta-anions as well as to previous data of poly-anionic aluminum clusters. In addition, new measurements of aluminum di-anions have revealed a lower minimum appearance size than reported earlier. Comparison of the experimental results with predictions by the conducting-sphere model for the di-, tri-, tetra- and penta-anions show deviations that are probably due to thermal excitation of the cluster anions. The cluster-size dependence of the poly-anion abundance spectra is qualitatively reproduced by thermionic emission.

References

  1. 1.
    Y. Ishii, Solid State Commun. 61, 227 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Perdew, Phys. Rev. B 37, 6175 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    C. Yannouleas, U. Landman, Chem. Phys. Lett. 210, 437 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M. Seidl, J.P. Perdew, M. Brajczewska, C. Fiolhais, J. Chem. Phys. 108, 8182 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    C. Yannouleas, U. Landman, Phys. Rev. B 61, R10587 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    A. Herlert, S. Krückeberg, L. Schweikhard, M. Vogel, C. Walther, Phys. Scr. T80, 200 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    L. Schweikhard, A. Herlert, S. Krückeberg, M. Vogel, C. Walther, Philos. Mag. B 79, 1343 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    C. Yannouleas, U. Landman, A. Herlert, L. Schweikhard, Eur. Phys. J. D 16, 81 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    C. Yannouleas, U. Landman, A. Herlert, L. Schweikhard, Phys. Rev. Lett. 86, 2996 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    C. Stoermer, J. Friedrich, M.M. Kappes, Int. J. Mass Spectrom. 206, 63 (2001)CrossRefGoogle Scholar
  11. 11.
    A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 229, 19 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Herlert, L. Schweikhard, M. Vogel, Eur. Phys. J. D 16, 65 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    N. Walsh, F. Martinez, G. Marx, L. Schweikhard, Eur. Phys. J. D 43, 241 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    N. Walsh, F. Martinez, G. Marx, L. Schweikhard, F. Ziegler, Eur. Phys. J. D 52, 27 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    N. Walsh, F. Martinez, G. Marx, L. Schweikhard, F. Ziegler, J. Chem. Phys. 132, 014308 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Astruc-Hoffmann, G. Wrigge, B.V. Issendorff, Phys. Rev. B 66, 041404(R) (2002)ADSGoogle Scholar
  17. 17.
    Ch. Kittel, Einführung in die Festkörperphysik, 14th edn. (Oldenbourg Wissenschaftsverlag, London, 1994)Google Scholar
  18. 18.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998), p. 5762Google Scholar
  19. 19.
    F. Martinez, S. Bandelow, C. Breitenfeldt, G. Marx, L. Schweikhard, F. Wienholtz, F. Ziegler, Int. J. Mass Spectrom. 313, 30 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Schweikhard, K. Hansen, A. Herlert, G. Marx, M. Vogel, Eur. Phys. J. D 24, 137 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    F. Martinez, G. Marx, L. Schweikhard, A. Vass, F. Ziegler, Eur. Phys. J. D 63, 255 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    R. Weidele, U. Frenzel, T. Leisner, D. Kreisle, Z. Phys. D 20, 411 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    A.G. Marshall, T.-C.L. Wang, T.L. Ricca, J. Am. Chem. Soc. 107, 7893 (1985)CrossRefGoogle Scholar
  24. 24.
    S. Guan, A.G. Marshall, Anal. Chem. 65, 1288 (1993)CrossRefGoogle Scholar
  25. 25.
    L. Schweikhard, J. Ziegler, H. Bopp, K. Lützenkirchen, Int. J. Mass Spectrom. Ion Process. 141, 77 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    A. Herlert, R. Jertz, J. Alonso Otamendi, A.J. Gonzalez Martinez, L. Schweikhard, Int. J. Mass Spectrom. 218, 217 (2002)CrossRefGoogle Scholar
  27. 27.
    D.R. Snider, R.S. Sorbello, Phys. Rev. B 28, 5702 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    W.A. de Heer, P. Milani, A. Châtelain, Phys. Rev. Lett. 63, 2834 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    E.E.B. Campbell, R.D. Levine, Annu. Rev. Phys. Chem. 51, 65 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    J.U. Andersen, E. Bonderup, K. Hansen, J. Phys. B 35, R1 (2002)ADSGoogle Scholar
  31. 31.
    S. Dushman, Phys. Rev. 21, 623 (1923)ADSCrossRefGoogle Scholar
  32. 32.
    C.E. Klots, J. Chem. Phys. 90, 4470 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    J.U. Andersen, E. Bonderup, K. Hansen, J. Chem. Phys. 114, 6518 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    E.E.B. Campbell, G. Ulmer, I.V. Hertel, Z. Phys. D 24, 81 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Collings, A.H. Amrein, D.M. Rayner, P.A. Hackett, J. Chem. Phys. 99, 4174 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    T. Leisner, K. Athanassenas, D. Kreisle, E. Recknagel, O. Echt, J. Chem. Phys. 99, 9670 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    B. Baguenard, J.C. Pinaré, C. Bordas, M. Broyer, Phys. Rev. A 63, 023204 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    C. Yeretzian, K. Hansen, R.L. Whetten, Science 260, 652 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    R. Deng, O. Echt, J. Phys. Chem. A 102, 2533 (1998)CrossRefGoogle Scholar
  40. 40.
    V. Weisskopf, Phys. Rev. 52, 295 (1937)ADSCrossRefGoogle Scholar
  41. 41.
    K. Hansen, U. Näher, Phys. Rev. A 60, 1240 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    C.E. Klots, Chem. Phys. Lett. 186, 73 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Toker, O. Aviv, M. Eritt, M.L. Rappaport, O. Heber, D. Schwalm, D. Zajfman, Phys. Rev. A 76, 053201 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    O. Aviv, Y. Toker, D. Strasser, M.L. Rappaport, O. Heber, D. Schwalm, D. Zajfman, Phys. Rev. A 83, 023201 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    J. Rajput, L. Lammich, L.H. Andersen, Phys. Rev. Lett. 100, 153001 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    G.F. Bertsch, N. Oberhofer, S. Stringari, Z. Phys. D 20, 123 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 249, 215 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 252, 151 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    A. Herlert, L. Schweikhard, Appl. Phys. B 107, 1131 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    R. Schlipper, R. Kusche, B.V. Issendorff, H. Haberland, Appl. Phys. A 72, 255 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    K. Hansen, K. Hoffmann, E.E.B. Campbell, J. Chem. Phys. 119, 2513 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    J.O. Johansson, J. Fedor, M. Goto, M. Kjellberg, J. Stenfalk, G.G. Henderson, E.E.B. Campbell, K. Hansen, J. Chem. Phys. 136, 164301 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    S. Frauendorf, Z. Phys. D 35, 191 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    C. Walther, G. Dietrich, W. Dostal, K. Hansen, S. Krückeberg, K. Lützenkirchen, L. Schweikhard, Phys. Rev. Lett. 83, 3816 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    W.F. Giauque, P.F. Meads, J. Am. Chem. Soc. 63, 1897 (1941)CrossRefGoogle Scholar
  56. 56.
    R.A. McDonald, J. Chem. Eng. Data 12, 115 (1967)CrossRefGoogle Scholar
  57. 57.
    C.R. Brooks, R.E. Bingham, J. Phys. Chem. Solids 29, 1553 (1968)ADSCrossRefGoogle Scholar
  58. 58.
    A.J. Leadbetter, J. Phys. C 1, 1481 (1968)ADSCrossRefGoogle Scholar
  59. 59.
    D.B. Downie, J.F. Martin, J. Chem. Thermodyn. 12, 779 (1980)CrossRefGoogle Scholar
  60. 60.
    F.L. Oetting, E.D. West, J. Chem. Thermodyn. 14, 107 (1982)CrossRefGoogle Scholar
  61. 61.
    P.D. Desai, Int. J. Thermophys. 8, 621 (1987)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Takahashi, T. Azumi, Y. Sekine, Thermochim. Acta 139, 133 (1989)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Franklin Martinez
    • 1
  • Steffi Bandelow
    • 1
  • Christian Breitenfeldt
    • 1
  • Gerrit Marx
    • 1
  • Lutz Schweikhard
    • 1
  • Frank Wienholtz
    • 1
  • Falk Ziegler
    • 1
  1. 1.Institut für Physik, Ernst-Moritz-Arndt-UniversitätGreifswaldGermany

Personalised recommendations