Advertisement

Geometric phase: an indicator of entanglement

  • S.N. SandhyaEmail author
  • S. BanerjeeEmail author
Regular Article

Abstract

Using a kinematic approach we show that the non-adiabatic, non-cyclic, geometric phase corresponding to the radiation emitted by a three level cascade system provides a sensitive diagnostic tool for determining the entanglement properties of the two modes of radiation. The nonunitary, noncyclic path in the state space may be realized through the same control parameters which control the purity/mixedness and entanglement. We show analytically that the geometric phase is related to concurrence in certain region of the parameter space. We further show that the rate of change of the geometric phase reveals its resilience to fluctuations only for pure Bell type states. Lastly, the derivative of the geometric phase carries information on both purity/mixedness and entanglement/separability.

Keywords

Quantum Optics 

References

  1. 1.
    A. Shapere, F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989)Google Scholar
  2. 2.
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems (Springer Verlag, Heidelberg, 2003)Google Scholar
  3. 3.
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, J. Phys. A: Math. Theor. 43 (2010) (Special issue on Aharanov-Bohm effect and Geometric phase)Google Scholar
  4. 4.
    E. Sjöqvist, Physics 1, 35 (2008)CrossRefGoogle Scholar
  5. 5.
    E. Knill, Nature 434, 39 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    L.-A. Wu, P. Zanardi, D.A. Lidar, Phys. Rev. Lett. 95, 130501 (2005) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    O. Oreshkov et al., Phys. Rev. Lett. 102, 070502 (2009) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    J. Anandan, Y. Aharonov, Phys. Rev. D 38, 1863 (1988) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Samuel, R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A.K. Pati, Phys. Rev. A 52, 2576 (1995) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A.K. Pati, J. Phys. A: Math. Theor. 28, 2087 (1995) MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    D.M. Tong, E. Sjöqvist, L.C. Kwek, C.H. Oh, Phys. Rev. Lett. 93, 080405 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Carollo et al., Phys. Rev. Lett. 90, 160402 (2003) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    A. Carollo et al., Phys. Rev. Lett. 92, 020402 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    D.M. Tong et al., Phys. Rev. Lett. 93, 080405 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    K.-P. Marzlin et al., Phys. Rev. Lett. 93, 260402 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Sarandy, D.A. Lidar, Phys. Rev. A 73, 062101 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    M.S. Sarandy et al., Phys. Rev. A 76, 052112 (2007) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    A. Uhlmann, Rep. Math. Phys. 24, 229 (1986)MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Uhlmann, Lett. Math. Phys. 21, 229 (1991)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    S. Banerjee, R. Srikanth, Eur. Phys. J. D 46, 335 (2008)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    E. Sjöqvist et al., Phys. Rev. Lett. 85, 2845 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    E. Sjöqvist, Phys. Rev. A 62, 022109 (2000) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    B. Hessmo, E. Sjöqvist, Phys. Rev. A 62, 062301 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    D.M. Tong et al., J. Phys. A: Math. Theor. 36, 1149 (2003) ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    D.M. Tong et al., Phys. Rev. A 68, 022106 (2003) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    M. Ericsson et al., Phys. Rev. Lett. 91, 090405 (2003) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    P. Mehta, J. Samuel, S. Sinha, Phys. Rev. A 82, 034102 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    S.N. Sandhya, V. Ravishankar, Phys. Rev. A 82, 062301 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    J.G. Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    J.F. Clauser, Phys. Rev. D 9, 853 (1974)ADSCrossRefGoogle Scholar
  36. 36.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997), p. 161Google Scholar
  37. 37.
    C.S. Castro, M.S. Sarandy, Phys. Rev. A 83, 042334 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsKanpurIndia
  2. 2.Department of PhysicsJodhpurIndia

Personalised recommendations