Advertisement

Nanoscale characterization of ion tracks: MC simulations versus analytical approach

  • M. U. BugEmail author
  • E. Surdutovich
  • H. Rabus
  • A. B. Rosenfeld
  • A. V. Solov’yov
Regular Article
Part of the following topical collections:
  1. Topical issue: Atomic Cluster Collisions

Abstract

The goal of this work was to investigate the agreement of physical parameters related to the particle track structure on the nanometer scale, obtained by means of a detailed track structure simulation (PTra) as well as by a rapid analytical approach. Parameters describing the tracks of secondary electrons produced by 0.3 MeV/u C6+-ions were of particular interest as those particles are densely ionizing. For this purpose, the target volume in form of a nanometric water cylinder was positioned at different radial distances from the ion trajectory and track structure parameters were determined as function of the radial distance. While the fluence of electrons through the target surface and the mean ionization cluster size obtained by both approaches were in good agreement, the probabilities of specific cluster sizes (one, two and three) turned out to be rather different in the two approaches.

Keywords

Topical issue: Atomic Cluster Collisions. Guest editors: Andrey V. Solov’yov and Andrey V. Korol 

References

  1. 1.
    D.T. Goodhead, H. Nikjoo, Int. J. Radiat. Biol. 55, 513 (1989)CrossRefGoogle Scholar
  2. 2.
    B. Grosswendt, S. Pszona, A. Bantsar, Radiat. Prot. Dosim. 126, 432 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Rabus, H. Nettelbeck, Radiat. Meas. 46, 1522 (2011)CrossRefGoogle Scholar
  4. 4.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    E. Surdutovich, A. Yakubovich, A.V. Solov’yov, Eur. Phys. J. D 60, 101 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    W. Friedland, P. Jacob, H.G. Paretzke, T. Stork, Radiat. Res. 150, 170182 (1998)CrossRefGoogle Scholar
  7. 7.
    B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002)Google Scholar
  8. 8.
    H. Nikjoo, S. Uehara, W.E. Wilson, M. Hoshi, D.T. Goodhead, Int. J. Radiat. Biol. 73, 355 (1998)CrossRefGoogle Scholar
  9. 9.
    U. Amaldi, G. Kraft, Rep. Prog. Phys. 68, 1861 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    M. Krämer, M. Durante, Eur. Phys. J. D 60, 195 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Garty, R. Schulte, S. Shchemelinin, C. Leloup, G. Assaf, A. Breskin, R. Chechik, V. Bashkirov, J. Milligan, B. Grosswendt, Phys. Med. Biol. 55, 761 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Incerti et al., Med. Phys. 37, 4692 (2010)CrossRefGoogle Scholar
  13. 13.
    R.W. Schulte, A.J. Wroe, V.A. Bashkirov, G.Y. Garty, A. Breskin, R. Chechik, S. Shchemelinin, E. Gargioni, B. Grosswendt, A.B. Rosenfeld, Z. Med. Phys. 18, 286 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Lazarakis, M.U. Bug, E. Gargioni, S. Guatelli, H. Rabus, A.B. Rosenfeld, Phys. Med. Biol. 57, 1231 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Michaud, A. Wen, L. Sanche, Radiat. Res. 159, 3 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Dingfelder, A. Travia, R.A. McLawhorn, J.L. Shinpaugh, L. Toburen, Rad. Phys. Chem. 77, 1213 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    E. Surdutovich, D.C. Gallagher, A.V. Solov’yov, Phys. Rev. E 84, 051918 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. U. Bug
    • 1
    • 2
    Email author
  • E. Surdutovich
    • 3
    • 4
  • H. Rabus
    • 1
  • A. B. Rosenfeld
    • 2
  • A. V. Solov’yov
    • 4
  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany
  2. 2.Centre for Medical Radiation PhysicsUniversity of WollongongWollongongAustralia
  3. 3.Department of PhysicsOakland UniversityRochesterUSA
  4. 4.Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany

Personalised recommendations