Advertisement

Double strand breaks in DNA resulting from double ionization events

  • E. SurdutovichEmail author
  • A.V. Solov’yov
Regular Article
Part of the following topical collections:
  1. Topical issue: Atomic Cluster Collisions

Abstract.

A mechanism of double strand breaking in DNA due to the action of two electrons is considered. These are the electrons produced in the vicinity of DNA molecules due to ionization of water molecules with a consecutive emission of two electrons, making such a mechanism possible. The transport of secondary electrons, including the additional electrons, is studied in relation to the assessment of radiation damage due to incident ions. This work is a stage in the inclusion of double ionization events into the multiscale approach to ion-beam cancer therapy.

Keywords

Topical issue: Atomic Cluster Collisions. Guest editors: Andrey V. Solov’yov and Andrey V. Korol 

References

  1. 1.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    E. Surdutovich, D.C. Gallagher, A.V. Solov’yov, Phys. Rev. E 84, 051918 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J. Kiefer, Biological Radiation Effects (Springer-Verlag, Berlin, Heidelberg, New York, 1990)Google Scholar
  5. 5.
    A. Kumar, M. Sevilla, Chem. Rev. 110, 7002 (2010) CrossRefGoogle Scholar
  6. 6.
    M.A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, L. Sanche, JACS 125, 4467 (2003) CrossRefGoogle Scholar
  7. 7.
    F.A. Gianturco, F. Sebastianelli, R.R. Lucchese, I. Baccarelli, N. Sanna, J. Chem. Phys. 128, 174302 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Park, Z. Li, P. Cloutier, L. Sanche, J. Wagner, Radiat. Res. 175, 240 (2011) CrossRefGoogle Scholar
  9. 9.
    W. Moddeman, T. Carlson, M. Krause, B. Pullen, J. Chem. Phys. 55, 2317 (1971) ADSCrossRefGoogle Scholar
  10. 10.
    H. Siegbahn, L. Asplund, P. Kelfve, Chem. Phys. Lett. 35, 330 (1975)ADSCrossRefGoogle Scholar
  11. 11.
    I. Hjelte et al., Chem. Phys. Lett. 334, 151 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    M. Mitani, O. Takahashi, K. Saito, S. Iwata, J. Electron Spectrosc. Relat. Phenom. 128, 103 (2003) CrossRefGoogle Scholar
  13. 13.
    L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    I.B. Müller, L.S. Cederbaum, J. Chem. Phys. 125, 204305 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    S.D. Stoychev, A.I. Kuleff, L.S. Cederbaum, J. Am. Chem. Soc. 133, 6817 (2011) CrossRefGoogle Scholar
  16. 16.
    T. Jahnke et al., Nat. Phys. 6, 139 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Mucke, M. Braune, S. Barth, M. Förstel, T. Lischke, V. Ulrich, T. Arion, U. Becker, A. Bradshaw, U. Hergenhahn, Nat. Phys. 6, 143 (2010)CrossRefGoogle Scholar
  18. 18.
    E. Surdutovich, O. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    W. Wilson, H. Nikjoo, Radiat. Environ. Biophys. 38, 97 (1999)CrossRefGoogle Scholar
  20. 20.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    M. Bug, E. Surdutovich, H. Rabus, A.B. Rosenfeld, A.V. Solov’yov, submitted to Eur. Phys. J. DGoogle Scholar
  22. 22.
    C. Tung, T. Chao, H. Hsieh, W. Chan, Nucl. Instr. Methods B 262, 231 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    S. McMahon et al., Sci. Rep. 1, 18 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsOakland UniversityRochesterUSA
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  3. 3.On leave from A.F. Ioffe Physical Technical InstituteSt. PetersburgRussian Federation

Personalised recommendations