Secondary ion emission dynamics of solid ammonia bombarded by heavy ions

  • R. MartinezEmail author
  • C.R. Ponciano
  • E.F. da Silveira
Regular Article


Relevant phenomena occurring in the projectile-solid interaction and the subsequent emission of secondary ions from the sample surface will be theoretically treated in this work. The goal is to determine the velocity and energy distributions of the secondary ions emitted from a target of solid ammonia, through the description of secondary electron emission by the nuclear track and the establishment of secondary ion trajectories. Calculations were made with the computer code SEID. Theoretical distributions, valid for secondary ions that no longer interact with the solid, were compared with the experimental distributions obtained for ammonia ice bombarded by 252Cf fission fragments. It was observed that ionic species of mass ~86 u, located within 10 Å from the projectile impact point, are desorbed without being neutralized, unlike lighter ions (~18 u) that leave the surface from more distant regions. Considering the ionization energy (I = 35 eV) of NH4, the experimental value of 6 km/s was reproduced. These comparisons also show that the model partially describes the behavior observed in the energy distribution of the emitted ions. As a result, new processes are proposed to be included in the model.


Atomic and Molecular Collisions 


  1. 1.
    O. Benka, A. Schinner, T. Fink, M. Pfaffenlehner, Nucl. Instrum. Methods B 115, 242 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    P. Iza, R. Sigaud, L.S. Farenzena, C.R. Ponciano, E.F. da Silveira, Braz. J. Phys. 35, 921 (2005)CrossRefGoogle Scholar
  3. 3.
    P. Iza, L.S. Farenzena, T. Jalowy, K.O. Groeneveld, E.F. da Silveira, Nucl. Instrum. Methods B 245, 61 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A.C. Cheung, D.M. Rank, C.H. Townes, Phys. Rev. Lett. 21, 1701 (1968) ADSCrossRefGoogle Scholar
  5. 5.
    P.T.P. Ho, C.H. Townes, Ann. Rev. Astron. Astrophys. 21, 239 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    W.R. Peifer, M.T. Coolbaugh, J.F. Garvey, J. Chem. Phys. 91, 6684 (1989) ADSCrossRefGoogle Scholar
  7. 7.
    R.E. Johnson, Energetic Charged Particles Interaction with Atmospheres and Surfaces (Springer-Verlag, Heidelberg, 1990)Google Scholar
  8. 8.
    R.D. Lorenz, J.I. Lunine, Icarus 122, 79 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    D.E. Woon, Icarus 149, 277 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    E.L. Gibb, D.C.B. Whittet, A.C.A. Boogert, A.G.G.M. Tielens, Astrophys. J. Suppl. Ser. 151, 35 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Lacy, F. Baas, L.J. Allamandola, S.E. Persson, P.J. McGregor, C.J. Lonsdale, T.R. Geballe, C.E.P. van de Bult, Astrophys. J. 276, 533 (1984) ADSCrossRefGoogle Scholar
  12. 12.
    F.A. Fernandez-Lima, T.M. Cardozo, R. Martinez, C.R. Ponciano, E.F. da Silveira, M.A. Chaer Nascimento, J. Phys. Chem. A 11, 8302 (2007)CrossRefGoogle Scholar
  13. 13.
    Y.J. Wu, C.Y.R. Wu, M.C. Liang, Icarus 214, 228 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    R. Martinez, L.S. Farenzena, P. Iza, C.R. Ponciano, M.G.P. Homem, A. Naves de Brito, E.F. Silveira, K. Wien, J. Mass Spectrom. 42, 1333 (2007) CrossRefGoogle Scholar
  15. 15.
    R. Martinez, C.R. Ponciano, L.S. Farenzena, P. Iza, M.G.P. Homem, A. Naves de Brito, E.F. da Silveira, K. Wien, Int. J. Mass Spectrom. 262, 195 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    D.P.P. Andrade, M.L.M. Rocco, H.M. Boechat-Roberty, P. Iza, R. Martinez, M.G.P. Homem, E.F. da Silveira, J. Electron Spectros. Rel. Phenom. 155, 124 (2007) CrossRefGoogle Scholar
  17. 17.
    C.R. Ponciano, R. Martinez, L.S. Farenzena, P. Iza, E.F. da Silveira, M.G.P. Homem, A. Naves de Brito, K. Wien, J. Am. Soc. Mass Spectrom. 17, 1120 (2006) CrossRefGoogle Scholar
  18. 18.
    R. Martinez, C.R. Ponciano, L.S. Farenzena, P. Iza, M.G.P. Homem, A. Naves de Brito, K. Wien, E.F. da Silveira, Int. J. Mass Spectrom. 253, 112 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    L.S. Farenzena, R. Martinez, P. Iza, C.R. Ponciano, M.G.P. Homem, A. Naves de Brito, E.F. da Silveira, K. Wien, Int. J. Mass Spectrom. 251, 1 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    L.S. Farenzena, P. Iza, R. Martinez, F.A. Fernandez-Lima, E. Seperuelo Duarte, G.S. Faraudo, C.R. Ponciano, M.G.P. Homem, A. Naves de Brito, K. Wien, E.F. da Silveira, Earth Moon Planet 97, 311 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    V.M. Collado, L.S. Farenzena, C.R. Ponciano, E.F. da Silveira, K. Wien, Surf. Sci. 569, 149 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    C. Plainaki, A. Milillo, A. Mura, S. Orsini, T. Cassidy, Icarus 210, 385 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    J. Shi, M. Famá, B.D. Teolis, R.A. Baragiola, Nucl. Instrum. Methods B 268, 2888 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    M. Shi, D.E. Grosjean, J. Schou, R.A. Baragiola, Nucl. Instrum. Methods B 96, 524 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    P. Iza, L.S. Farenzena, E.F. da Silveira, Nucl. Instrum. Methods B 256, 483 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    P. Iza, Ph.D. thesis, Pontifícia Universidade Católica de Rio de Janeiro, Physics Department, 2006Google Scholar
  27. 27.
    M. Nastasi, Ion-Solid Interactions: Fundamentals and applications, edited by D.R. Clarke (Solid State Science Series, Cambridge, 1996)Google Scholar
  28. 28.
    G. Schiwietz, E. Luderer, P.L. Grande. Appl. Surf. Sci. 182, 286 (2001) ADSGoogle Scholar
  29. 29.
    R. Neugebauer, T. Jalowy, J.A.M. Pereira, E.F. da Silveira, H. Rothard, M. Toulemonde, K.O. Groenevelda, Nucl. Instrum. Methods B 209, 62 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    P.L. Grande, G. Schiwietz, Nucl. Instrum. Methods B 195, 55 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    G. Schiwietz, P.L. Grande, B. Skogvall, J.P. Biersack, R. Köhrbrück, K. Sommer, A. Schmoldt, P. Goppelt, I. Kádár, S. Ricz, U. Stettner, Phys. Rev. Lett. 69, 628 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    N. Djuric, D. Belic, M. Kurepa, J.U. Mack, J. Rothleitner, T.D. Märk, in Abstracts, 12th Int. Conf. on the Physics of Atomic and Electronic Collisions, edited by S. Datz (Gatlinburg, 1981), p. 384 Google Scholar
  33. 33.
    Y.K. Kim, W. Hwang, N.M. Weinberger, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    J.A.M. Pereira, E.F. da Silveira, Phys. Rev. Lett. 84, 5904 (2000) ADSCrossRefGoogle Scholar
  35. 35.
    J. Lenoir, P. Boduch, H. Rothard, B. Ban-d’Etat, T. Been, A. Cassimi, T. Jalowy, H. Lebius, B. Manil, J.M. Ramillon, Nucl. Instrum. Methods B 258, 178 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    K. Czerski, G. Schiwietz, M. Roth, F. Staufenbiel, P. Grande, S.R. Bhattacharyya, Nucl. Instrum. Methods B 225, 72 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics DepartmentPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations