Advertisement

Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse

  • R. DeyEmail author
  • A. C. Roy
Regular Article
Part of the following topical collections:
  1. Topical issue: Atomic Cluster Collisions

Abstract

We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.

Keywords

Topical issue: Atomic Cluster Collisions. Guest editors: Andrey V. Solov’yov and Andrey V. Korol 

References

  1. 1.
    H. Wabnitz, L. Bittner, A.R.B. de Castro, R. Döhrmann, P. Gürtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K. von Haeften, T. Möller, B. Faatz, A. Fateev, J. Feldhaus, C. Gerth, U. Hahn, E. Saldin, E. Schneidmiller, K. Sytchev, K. Tiedtke, R. Treusch, M. Yurkovk, Nature 420, 482 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    T. Laarmann, M. Rusek, H. Wabnitz, J. Schulz, A.R.B. de Castro, P. Gürtler, W. Laasch, T. Möller, Phys. Rev. Lett. 95, 063402 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    U. Saalmann, Ch. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    C. Deiss, N. Rohringer, J. Burgdörfer, E. Lamour, C. Prigent, J.P. Rozet, D. Vernhet, Phys. Rev. Lett. 96, 013203 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    J. Jha, M. Krishnamurthy, J. Phys. B: At. Mol. Opt. Phys. 41, 041002 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    H. Thomas, C. Bostedt, M. Hoener, E. Eremina, H. Wabnitz, T. Laarmann, E. Plönjes, R. Treusch, A.R.B. de Castro, T. Möller, J. Phys. B: At. Mol. Opt. Phys. 42, 134018 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    N.M. Kroll, K.M. Watson, Phys. Rev. A 8, 804 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    V.P. Krainov, M.B. Smirnov, Phys. Rep. 370, 237 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    R. Santra, C.H. Greene, Phys. Rev. Lett. 91, 233401 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Z.B. Walters, R. Santra, C.H. Greene, Phys. Rev. A 74, 043204 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    P. Mulser, R. Schneider, J. Phys. A Math. Theor. 42, 214058 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    M. Arbeiter, T. Fennel, New J. Phys. 13, 053022 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    F. Wang, E. Weckert, B. Ziaja, J. Plasma Phys. 75, 289 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M. Moll, P. Hilse, M. Schlanges, Th. Bornath, V.P. Krainov, J. Phys. B 43, 135103 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Glauber, in Lectures in the Theoretical Physics, edited by W.E. Brittin et al. (Wiley-Interscience, New Work, 1959), Vol. I, p. 315Google Scholar
  17. 17.
    A.C. Roy, N.C. Sil, J. Phys. B: At. Mol. Phys. 11, 2729 (1978) ADSCrossRefGoogle Scholar
  18. 18.
    F.J. Rogers, Phys. Rev. A 23, 1008 (1981) ADSCrossRefGoogle Scholar
  19. 19.
    G.M. Petrov, J. Davis, Phys. Plasmas 15, 056705 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    E. Gerjuoy, B.K. Thomas, Rep. Prog. Phys. 37, 1345 (1974) ADSCrossRefGoogle Scholar
  21. 21.
    R. Dey, A.C. Roy, Phys. Lett. A 332, 60 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    R. Dey, A.C. Roy, Phys. Lett. A 353, 341 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    R. Dey, A.C. Roy, C. Dal Cappello, Nucl. Instrum. Meth. B 266, 242 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    R. Dey, A.C. Roy, Nucl. Instrum. Meth. B 267, 2357 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    M. Schulz, A.C. Laforge, K.N. Egodapitiya, J.S. Alexander, A. Hasan, M.F. Ciappina, A.C. Roy, R. Dey, A. Samolov, A.L. Godunov, Phys. Rev. A 81, 052705 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    R. Dey, A.C. Roy, Nucl. Instrum. Meth. B 269, 364 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    R. Dey, A.C. Roy, C. Dal Cappello, Nucl. Instrum. Meth. B 271, 82 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    R.G. Newton, Scattering Theory of Waves and Particles (Springer, Berlin, 1982)Google Scholar
  29. 29.
    H. Neumann, T.Q. Le, B. Van Zyl, Phys. Rev. A 15, 1887 (1977) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarchingGermany
  2. 2.School of Mathematical SciencesRamakrishna Mission Vivekananda UniversityBelur MathIndia

Personalised recommendations