Na clusters on metal supported Ar layers

  • B. Faber
  • P. M. Dinh
  • P. G. Reinhard
  • E. SuraudEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Atomic Cluster Collisions


We investigate from a theoretical perspective structure and dynamics of Na clusters on a surface built from Ar layers grown on a metal support. The system is modeled by a hierarchical quantum-mechanical/molecular-mechanical (QM/MM) approach treating the cluster electrons with time-dependent density-functional theory, the Ar atoms classically, and the metal support as a continuous dielectric medium. Caution has been taken to describe properly the dynamical polarizability of the Ar substrate. We study the effect of the Ar substrate and particularly of the metal support on the cluster structure and dynamics. The binding of Na6 and Na8 to the Ar surface is found to by very weak and the effect of the dielectric response of the metal (DRM) turns out to be negligible. The global properties of the optical response of the Na clusters are slightly changed by the Ar substrate and the DRM while the detailed spectral fragmentation depends sensitively on any change of the environment. The deposition dynamics of small Na clusters is crucially influenced by the mechanical hardness of the metal support while the DRM makes little effect. We also study the dependence on the number of Ar layers. For the first few layers (from two to four), the deposition dynamics changes dramatically with the number of layers. The results stabilize from six layers on upwards.


Topical issue: Atomic Cluster Collisions. Guest editors: Andrey V. Solov’yov and Andrey V. Korol 


  1. 1.
    J.H. Weaver, G.D. Waddil, Science 251, 1444 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    K. Bromann, H. Brune, C. Felix, W. Harbich, R. Monot, J. Buttet, K. Kern, Surf. Sci. 377, 1051 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    J.H. Weaver, L. Huang, S.J. Chey, Phys. Rev. Lett. 80, 4095 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    J.H. Weaver, C. Haley, Surf. Sci. 518, 243 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Honolka, V. Sessi, J. Zhang, S. Hertenberger, A. Enders, K. Kern, Phys. Stat. Sol. B 247, 1063 (2010)Google Scholar
  6. 6.
    R. Schaub, H. Jödicke, F. Brunet, R. Monot, J. Buttet, W. Harbich, Phys. Rev. Lett. 86, 3590 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    T. Irawan, D. Boecker, F. Ghaleh, B.V. Issendorf, H. Hövel, Appl. Phys. A 82, 81 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, 1993), Vol. 25Google Scholar
  9. 9.
    Clusters of Atoms and Molecules 1- Theory, Experiment, and Clusters of Atoms, edited by H. Haberland (Springer Series in Chemical Physics, Berlin, 1994), Vol. 52Google Scholar
  10. 10.
    H.H. Richardson, Z.N. Hickman, A.O. Govorov, A.C. Thomas, W. Zhang, M.E. Kordesch, Nano Lett. 6, 783 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, N. Khlebtsov, Nanotechnology 17, 5167 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Clusters of Atoms and Molecules 2- Solvation and Chemistry of Free Clusters, and Embedded, Supported and Compressed Clusters, edited by H. Haberland (Springer Series in Chemical Physics, Berlin, 1994), Vol. 56Google Scholar
  13. 13.
    Metal clusters at surfaces, edited by K.H. Meiwes-Broer (Springer, Berlin, 2000)Google Scholar
  14. 14.
    Clusters at Surfaces: Electronic Properties and Magnetism, edited by K.H. Meiwes-Broer (2006), Vol. 82, Appl. Phys. A, special issueGoogle Scholar
  15. 15.
    Atomic Clustes at Surfaces and in Thin Films, edited by K.H. Meiwes-Broer, R. Berndt (2007), Vol. 45, Eur. Phys. J. D, topical issueGoogle Scholar
  16. 16.
    K.H. Meiwes-Broer, Phys. Stat. Sol. B 247, 999 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Schlipper, R. Kusche, B. von Issendorff, H. Haberland, Appl. Phys. A 72, 255 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    F. Fehrer, M. Mundt, P.G. Reinhard, E. Suraud, Ann. Phys. 14, 411 (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    F. Fehrer, P.G. Reinhard, E. Suraud, E. Giglio, B. Gervais, A. Ipatov, Appl. Phys. A 82, 151 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 485, 43 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)CrossRefGoogle Scholar
  22. 22.
    A.V. Matveev, K.M. Neyman, G. Pacchioni, N. Rösch, Chem. Phys. Lett. 299, 603 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    N. Gresh, O. Parisel, C. Giessner-Prettre, Theochem 458, 27 (1999)CrossRefGoogle Scholar
  24. 24.
    B. Gervais, E. Giglio, E. Jacquet, A. Ipatov, P.G. Reinhard, F. Fehrer, E. Suraud, Phys. Rev. A 71, 015201 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    B. Gervais, E. Giglio, E. Jaquet, A. Ipatov, P.G. Reinhard, E. Suraud, J. Chem. Phys. 121, 8466 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B 35, 1115 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kümmel, M. Brack, P.G. Reinhard, Eur. Phys. J. D 9, 149 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley, New York, 2003)Google Scholar
  29. 29.
    F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    B.G. Dick, A.W. Overhauser, Phys. Rev. 112, 90 (1958)ADSCrossRefGoogle Scholar
  31. 31.
    F. Duplàa, F. Spiegelmann, J. Chem. Phys. 105, 1492 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    G.R. Ahmadi, J. Almlöf, J. Roegen, Chem. Phys. 199, 33 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962)Google Scholar
  34. 34.
    M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    V. Blum, G. Lauritsch, J.A. Maruhn, P.G. Reinhard, J. Comput. Phys. 100, 364 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    B. Montag, P.G. Reinhard, Phys. Lett. A 193, 380 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    B. Montag, P.G. Reinhard, Z. Phys. D 33, 265 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    P.G. Reinhard, J. Friedrich, N. Voegler, Z. Phys. A 316, 207 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    J. Maruhn, P.G. Reinhard, E. Suraud, Simple models of many-fermions systems (Springer, Berlin, 2010)Google Scholar
  40. 40.
    T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.M. Dinh, P.G. Reinhard, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    F. Calvayrac, P.G. Reinhard, E. Suraud, Ann. Phys. 255, 125 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    F. Fehrer, P.G. Reinhard, E. Suraud, Appl. Phys. A 82, 145 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    E.M. Lifschitz, L.P. Pitajewski, Physikalische Kinetik, Lehrbuch der Theoretischen Physik (Mir, Moscow, 1988), Vol. XGoogle Scholar
  46. 46.
    P.M. Dinh, F. Fehrer, P.G. Reinhard, E. Suraud, Eur. Phys. J. D 45, 415 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. Faber
    • 1
  • P. M. Dinh
    • 2
  • P. G. Reinhard
    • 1
  • E. Suraud
    • 2
    Email author
  1. 1.Institut für Theoretische Physik IIUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Laboratoire de Physique ThéoriqueUniversité P. SabatierToulouse CedexFrance

Personalised recommendations