Observation of entanglement witnesses for orbital angular momentum states

Regular Article
Part of the following topical collections:
  1. Topical issue: High Dimensional Quantum Entanglement

Abstract

Entanglement witnesses provide an efficient means of determining the level of entanglement of a system using the minimum number of measurements. Here we demonstrate the observation of two-dimensional entanglement witnesses in the high-dimensional basis of orbital angular momentum (OAM). In this case, the number of potentially entangled subspaces scales as d(d − 1)/2, where d is the dimension of the space. The choice of OAM as a basis is relevant as each subspace is not necessarily maximally entangled, thus providing the necessary state for certain tests of nonlocality. The expectation value of the witness gives an estimate of the state of each two-dimensional subspace belonging to the d-dimensional Hilbert space. These measurements demonstrate the degree of entanglement and therefore the suitability of the resulting subspaces for quantum information applications.

References

  1. 1.
    M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Nature 421, 509 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSMATHCrossRefGoogle Scholar
  8. 8.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  9. 9.
    L. Hardy, Phys. Rev. Lett. 71, 1665 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64, 052312 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    N.K. Langford, R.B. Dalton, M.D. Harvey, J.L. OBrien, G.J. Pryde, A. Gilchrist, S.D. Bartlett, A.G. White, Phys. Rev. Lett. 93, 053601 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G. Molina-Terriza, A. Vaziri, J. Řehčáek, Z. Hradil, A. Zeilinger, Phys. Rev. Lett. 92, 167903 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    K.J. Resch, P. Walther, A. Zeilinger, Phys. Rev. Lett. 94, 070402 (2005)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D.N. Matsukevich, P. Maunz, D.L. Moehring, S. Olmschenk, C. Monroe, Phys. Rev. Lett. 100, 150404 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    B. Jack, J. Leach, H. Ritsch, S.M. Barnett, M.J. Padgett, S. Franke-Arnold, New J. Phys. 11, 103024 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Agnew, J. Leach, M. McLaren, F.S. Roux, R.W. Boyd, Phys. Rev. A 84, 062101 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Phys. Rev. A 62, 052310 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Phys. Rev. A 66, 062305 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    G.M. D’Ariano, C. Macchiavello, M.G.A. Paris, Phys. Rev. A 67, 042310 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A.O. Pittenger, M.H. Rubin, Phys. Rev. A 67, 012327 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    R.A. Bertlmann, K. Durstberger, B.C. Hiesmayr, P. Krammer, Phys. Rev. A 72, 052331 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G.M. D’Ariano, C. Macchiavello, Phys. Rev. Lett. 91, 227901 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 92, 087902 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    M. Lewenstein, B. Kraus, P. Horodecki, J.I. Cirac, Phys. Rev. A 63, 044304 (2001)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    D. Bruß, J.I. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M. Lewenstein, A. Sanpera, J. Mod. Opt. 49, 1399 (2002)ADSMATHCrossRefGoogle Scholar
  27. 27.
    J.P. Torres, A. Alexandrescu, L. Torner, Phys. Rev. A 68, 050301 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    F.M. Miatto, A.M. Yao, S.M. Barnett, Phys. Rev. A 83, 033816 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Yao, New J. Phys. 13, 053048 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dept. of Physics, University of OttawaOntarioCanada
  2. 2.Institute of Optics, University of RochesterRochesterUSA

Personalised recommendations