Explosive evaporation of Rb or K fractal clusters by low power CW radiation in the presence of excited atoms

  • S. N. AtutovEmail author
  • A. I. Plekhanov
  • A. M. Shalagin
  • R. Calabrese
  • L. Tomassetti
  • V. Guidi
Regular Article


In this paper we describe a new, spectacular, unpredictable effect of the explosive evaporation of metallic Rb or K fractal clusters, only in the presence of excited atoms stimulated by resonant CW laser radiation in a heat-pipe glass cell. Evaporation occurs at low laser-power density, in the presence of a buffer gas. The effect consists of the generation of optically thick, sharply localized alkaline metals vapour clouds propagating in the cell against the laser beam. These clouds are charged and exhibit a strong luminescence of Rb or K spectral lines. We believe that the explosive evaporation of metallic fractal clusters observed is explained by the laser excitation of alkali atoms. The excited atom collides into the surface of the clusters and transfers its internal energy to the surface locally. This energy greatly raises the temperature of this local part of the clusters surface, melts it and decreases the fractal surface area. Because, in general, any fractal cluster systems have a high surface energy, some of processes which leads to decreasing their surface area can liberate the surface energy. This energy increases the total temperature of the clusters and eventually leads to the thermal explosion of the cluster.


Clusters and Nanostructures 

Supplementary material

Supplementary material, approximately 876 KB

Supplementary material, approximately 2.51 MB

Supplementary material, approximately 3.32 MB


  1. 1.
    B.M. Smirnov, Clusters and Small Particles (Springer-Verlag, New York, Inc., 2000)Google Scholar
  2. 2.
    V.M. Shalaev, Optical Properties of Nanostructured Random Media. Topics in applied physics (Springer-Verlag, Berlin, Heidelberg, 2002), Vol. 82Google Scholar
  3. 3.
    C.R. Viadal, J. Cooper, J. Appl. Phys. 40, 3370 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    See for video clips, showing the movement of luminous clouds of alkaline metal vapors
  5. 5.
    S.N. Atutov et al., Phys. Rev. Lett. 87, 215002 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    C.G. Granqvist, R.A. Buhrman, J. Appl. Phys. 47, 2200 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1985)Google Scholar
  8. 8.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000)Google Scholar
  9. 9.
    G.N. Nikolaev, Zh. Eksp. Teor. Fiz. 102, 394 (2006) [Sov. Phys. JETP 102, 394 (2006)]Google Scholar
  10. 10.
    F. Family, D.P. Landau, Kinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984)Google Scholar
  11. 11.
    N.N. Semenov, Chemical Kinetics and Chain Reactions (The Clarendon Press, Oxford, 1935)Google Scholar
  12. 12.
    B.M. Smirnov, Sov. Phys. Usp. 34, 526 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Kudriavtsev, A. Villegas, A. Godines, R. Asomoza, Appl. Surf. Sci. 239, 273 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    I.M. Beterov, A.V. Eletskii, B.M. Smirnov, Sov. Phys. Usp. 31, 535 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    N.A. Gorbunov, A. Grochola, P. Kruk, A. Pietruczuk, T. Stacewicz, Plasma Sources Sci. Technol. 11, 492 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Kaplan, S.B. Pikel’ner, Interstellar Medium (Cambridge University Press, Cambridge, 1982)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. N. Atutov
    • 1
    • 2
    Email author
  • A. I. Plekhanov
    • 1
  • A. M. Shalagin
    • 1
  • R. Calabrese
    • 2
  • L. Tomassetti
    • 2
  • V. Guidi
    • 2
  1. 1.Institute Automation and ElectrometryRussian Academy of ScienceNovosibirskRussia
  2. 2.Dipartimento di Fisica dell’Università di Ferrara and Istituto Nazionale di Fisica Nucleare Sezione di FerraraFerraraItaly

Personalised recommendations